No Cover Image

Conference Paper/Proceeding/Abstract 461 views

Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections

Shang-ming Zhou Orcid Logo, Rahman A Muhammad, Samuel Sheppard, Robin Howe, Ronan A Lyons, Sinead Brophy

The Lancet, Volume: 390, Start page: S99

Swansea University Author: Shang-ming Zhou Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: The Lancet
ISSN: 01406736
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa49928
first_indexed 2019-04-09T13:04:49Z
last_indexed 2019-06-05T11:05:52Z
id cronfa49928
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-05-27T17:16:30.7507098</datestamp><bib-version>v2</bib-version><id>49928</id><entry>2019-04-08</entry><title>Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections</title><swanseaauthors><author><sid>118578a62021ba8ef61398da0a8750da</sid><ORCID>0000-0002-0719-9353</ORCID><firstname>Shang-ming</firstname><surname>Zhou</surname><name>Shang-ming Zhou</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-08</date><deptcode>MEDS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>The Lancet</journal><volume>390</volume><paginationStart>S99</paginationStart><publisher/><issnPrint>01406736</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1016/S0140-6736(17)33034-9</doi><url/><notes>Meeting Abstract</notes><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-05-27T17:16:30.7507098</lastEdited><Created>2019-04-08T10:11:56.3805779</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Shang-ming</firstname><surname>Zhou</surname><orcid>0000-0002-0719-9353</orcid><order>1</order></author><author><firstname>Rahman A</firstname><surname>Muhammad</surname><order>2</order></author><author><firstname>Samuel</firstname><surname>Sheppard</surname><order>3</order></author><author><firstname>Robin</firstname><surname>Howe</surname><order>4</order></author><author><firstname>Ronan A</firstname><surname>Lyons</surname><order>5</order></author><author><firstname>Sinead</firstname><surname>Brophy</surname><order>6</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2019-05-27T17:16:30.7507098 v2 49928 2019-04-08 Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections 118578a62021ba8ef61398da0a8750da 0000-0002-0719-9353 Shang-ming Zhou Shang-ming Zhou true false 2019-04-08 MEDS Conference Paper/Proceeding/Abstract The Lancet 390 S99 01406736 31 12 2017 2017-12-31 10.1016/S0140-6736(17)33034-9 Meeting Abstract COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2019-05-27T17:16:30.7507098 2019-04-08T10:11:56.3805779 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Shang-ming Zhou 0000-0002-0719-9353 1 Rahman A Muhammad 2 Samuel Sheppard 3 Robin Howe 4 Ronan A Lyons 5 Sinead Brophy 6
title Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
spellingShingle Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
Shang-ming Zhou
title_short Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
title_full Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
title_fullStr Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
title_full_unstemmed Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
title_sort Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
author_id_str_mv 118578a62021ba8ef61398da0a8750da
author_id_fullname_str_mv 118578a62021ba8ef61398da0a8750da_***_Shang-ming Zhou
author Shang-ming Zhou
author2 Shang-ming Zhou
Rahman A Muhammad
Samuel Sheppard
Robin Howe
Ronan A Lyons
Sinead Brophy
format Conference Paper/Proceeding/Abstract
container_title The Lancet
container_volume 390
container_start_page S99
publishDate 2017
institution Swansea University
issn 01406736
doi_str_mv 10.1016/S0140-6736(17)33034-9
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
document_store_str 0
active_str 0
published_date 2017-12-31T04:46:39Z
_version_ 1821379447099490304
score 11.04748