Conference Paper/Proceeding/Abstract 460 views
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
The Lancet, Volume: 390, Start page: S99
Swansea University Author: Shang-ming Zhou
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/S0140-6736(17)33034-9
Abstract
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
Published in: | The Lancet |
---|---|
ISSN: | 01406736 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa49928 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-04-09T13:04:49Z |
---|---|
last_indexed |
2019-06-05T11:05:52Z |
id |
cronfa49928 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-05-27T17:16:30.7507098</datestamp><bib-version>v2</bib-version><id>49928</id><entry>2019-04-08</entry><title>Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections</title><swanseaauthors><author><sid>118578a62021ba8ef61398da0a8750da</sid><ORCID>0000-0002-0719-9353</ORCID><firstname>Shang-ming</firstname><surname>Zhou</surname><name>Shang-ming Zhou</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-08</date><deptcode>BMS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>The Lancet</journal><volume>390</volume><paginationStart>S99</paginationStart><publisher/><issnPrint>01406736</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1016/S0140-6736(17)33034-9</doi><url/><notes>Meeting Abstract</notes><college>COLLEGE NANME</college><department>Biomedical Sciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BMS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-05-27T17:16:30.7507098</lastEdited><Created>2019-04-08T10:11:56.3805779</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Shang-ming</firstname><surname>Zhou</surname><orcid>0000-0002-0719-9353</orcid><order>1</order></author><author><firstname>Rahman A</firstname><surname>Muhammad</surname><order>2</order></author><author><firstname>Samuel</firstname><surname>Sheppard</surname><order>3</order></author><author><firstname>Robin</firstname><surname>Howe</surname><order>4</order></author><author><firstname>Ronan A</firstname><surname>Lyons</surname><order>5</order></author><author><firstname>Sinead</firstname><surname>Brophy</surname><order>6</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2019-05-27T17:16:30.7507098 v2 49928 2019-04-08 Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections 118578a62021ba8ef61398da0a8750da 0000-0002-0719-9353 Shang-ming Zhou Shang-ming Zhou true false 2019-04-08 BMS Conference Paper/Proceeding/Abstract The Lancet 390 S99 01406736 31 12 2017 2017-12-31 10.1016/S0140-6736(17)33034-9 Meeting Abstract COLLEGE NANME Biomedical Sciences COLLEGE CODE BMS Swansea University 2019-05-27T17:16:30.7507098 2019-04-08T10:11:56.3805779 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Shang-ming Zhou 0000-0002-0719-9353 1 Rahman A Muhammad 2 Samuel Sheppard 3 Robin Howe 4 Ronan A Lyons 5 Sinead Brophy 6 |
title |
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections |
spellingShingle |
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections Shang-ming Zhou |
title_short |
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections |
title_full |
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections |
title_fullStr |
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections |
title_full_unstemmed |
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections |
title_sort |
Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections |
author_id_str_mv |
118578a62021ba8ef61398da0a8750da |
author_id_fullname_str_mv |
118578a62021ba8ef61398da0a8750da_***_Shang-ming Zhou |
author |
Shang-ming Zhou |
author2 |
Shang-ming Zhou Rahman A Muhammad Samuel Sheppard Robin Howe Ronan A Lyons Sinead Brophy |
format |
Conference Paper/Proceeding/Abstract |
container_title |
The Lancet |
container_volume |
390 |
container_start_page |
S99 |
publishDate |
2017 |
institution |
Swansea University |
issn |
01406736 |
doi_str_mv |
10.1016/S0140-6736(17)33034-9 |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
document_store_str |
0 |
active_str |
0 |
published_date |
2017-12-31T04:01:11Z |
_version_ |
1763753142009200640 |
score |
11.036837 |