Journal article 1120 views 189 downloads
An infinite dimensional umbral calculus
Journal of Functional Analysis, Volume: 276, Issue: 12, Pages: 3714 - 3766
Swansea University Authors: Dmitri Finkelshtein , Eugene Lytvynov
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (452.44KB)
DOI (Published version): 10.1016/j.jfa.2019.03.006
Abstract
The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial s...
Published in: | Journal of Functional Analysis |
---|---|
ISSN: | 00221236 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa49896 |
first_indexed |
2019-04-04T16:40:52Z |
---|---|
last_indexed |
2020-07-10T03:11:26Z |
id |
cronfa49896 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-09T20:37:34.5939892</datestamp><bib-version>v2</bib-version><id>49896</id><entry>2019-04-04</entry><title>An infinite dimensional umbral calculus</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-04</date><deptcode>MACS</deptcode><abstract>The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.</abstract><type>Journal Article</type><journal>Journal of Functional Analysis</journal><volume>276</volume><journalNumber>12</journalNumber><paginationStart>3714</paginationStart><paginationEnd>3766</paginationEnd><publisher/><issnPrint>00221236</issnPrint><keywords>Polynomial sequence of binomial type on $\mathcal D&apos;$; Sheffer sequence on $\mathcal D&apos;$; shift-invariant operators; umbral calculus on $\mathcal D&apos;$</keywords><publishedDay>16</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-06-16</publishedDate><doi>10.1016/j.jfa.2019.03.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-09T20:37:34.5939892</lastEdited><Created>2019-04-04T14:06:47.1430334</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Yuri</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author><author><firstname>Maria João</firstname><surname>Oliveira</surname><order>4</order></author></authors><documents><document><filename>0049896-04042019140737.pdf</filename><originalFilename>Finalversionv3.pdf</originalFilename><uploaded>2019-04-04T14:07:37.9530000</uploaded><type>Output</type><contentLength>418786</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-04-01T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-09T20:37:34.5939892 v2 49896 2019-04-04 An infinite dimensional umbral calculus 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2019-04-04 MACS The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role. Journal Article Journal of Functional Analysis 276 12 3714 3766 00221236 Polynomial sequence of binomial type on $\mathcal D'$; Sheffer sequence on $\mathcal D'$; shift-invariant operators; umbral calculus on $\mathcal D'$ 16 6 2019 2019-06-16 10.1016/j.jfa.2019.03.006 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-07-09T20:37:34.5939892 2019-04-04T14:06:47.1430334 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Yuri Kondratiev 2 Eugene Lytvynov 0000-0001-9685-7727 3 Maria João Oliveira 4 0049896-04042019140737.pdf Finalversionv3.pdf 2019-04-04T14:07:37.9530000 Output 418786 application/pdf Accepted Manuscript true 2020-04-01T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng |
title |
An infinite dimensional umbral calculus |
spellingShingle |
An infinite dimensional umbral calculus Dmitri Finkelshtein Eugene Lytvynov |
title_short |
An infinite dimensional umbral calculus |
title_full |
An infinite dimensional umbral calculus |
title_fullStr |
An infinite dimensional umbral calculus |
title_full_unstemmed |
An infinite dimensional umbral calculus |
title_sort |
An infinite dimensional umbral calculus |
author_id_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf e5b4fef159d90a480b1961cef89a17b7 |
author_id_fullname_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov |
author |
Dmitri Finkelshtein Eugene Lytvynov |
author2 |
Dmitri Finkelshtein Yuri Kondratiev Eugene Lytvynov Maria João Oliveira |
format |
Journal article |
container_title |
Journal of Functional Analysis |
container_volume |
276 |
container_issue |
12 |
container_start_page |
3714 |
publishDate |
2019 |
institution |
Swansea University |
issn |
00221236 |
doi_str_mv |
10.1016/j.jfa.2019.03.006 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role. |
published_date |
2019-06-16T07:40:48Z |
_version_ |
1821571597995081728 |
score |
11.047674 |