No Cover Image

Journal article 1120 views 189 downloads

An infinite dimensional umbral calculus

Dmitri Finkelshtein Orcid Logo, Yuri Kondratiev, Eugene Lytvynov Orcid Logo, Maria João Oliveira

Journal of Functional Analysis, Volume: 276, Issue: 12, Pages: 3714 - 3766

Swansea University Authors: Dmitri Finkelshtein Orcid Logo, Eugene Lytvynov Orcid Logo

  • Finalversionv3.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (452.44KB)

Abstract

The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial s...

Full description

Published in: Journal of Functional Analysis
ISSN: 00221236
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa49896
first_indexed 2019-04-04T16:40:52Z
last_indexed 2020-07-10T03:11:26Z
id cronfa49896
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-09T20:37:34.5939892</datestamp><bib-version>v2</bib-version><id>49896</id><entry>2019-04-04</entry><title>An infinite dimensional umbral calculus</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-04</date><deptcode>MACS</deptcode><abstract>The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.</abstract><type>Journal Article</type><journal>Journal of Functional Analysis</journal><volume>276</volume><journalNumber>12</journalNumber><paginationStart>3714</paginationStart><paginationEnd>3766</paginationEnd><publisher/><issnPrint>00221236</issnPrint><keywords>Polynomial sequence of binomial type on $\mathcal D&amp;apos;$; Sheffer sequence on $\mathcal D&amp;apos;$; shift-invariant operators; umbral calculus on $\mathcal D&amp;apos;$</keywords><publishedDay>16</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-06-16</publishedDate><doi>10.1016/j.jfa.2019.03.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-09T20:37:34.5939892</lastEdited><Created>2019-04-04T14:06:47.1430334</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Yuri</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author><author><firstname>Maria Jo&#xE3;o</firstname><surname>Oliveira</surname><order>4</order></author></authors><documents><document><filename>0049896-04042019140737.pdf</filename><originalFilename>Finalversionv3.pdf</originalFilename><uploaded>2019-04-04T14:07:37.9530000</uploaded><type>Output</type><contentLength>418786</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-04-01T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-09T20:37:34.5939892 v2 49896 2019-04-04 An infinite dimensional umbral calculus 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2019-04-04 MACS The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role. Journal Article Journal of Functional Analysis 276 12 3714 3766 00221236 Polynomial sequence of binomial type on $\mathcal D&apos;$; Sheffer sequence on $\mathcal D&apos;$; shift-invariant operators; umbral calculus on $\mathcal D&apos;$ 16 6 2019 2019-06-16 10.1016/j.jfa.2019.03.006 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-07-09T20:37:34.5939892 2019-04-04T14:06:47.1430334 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Yuri Kondratiev 2 Eugene Lytvynov 0000-0001-9685-7727 3 Maria João Oliveira 4 0049896-04042019140737.pdf Finalversionv3.pdf 2019-04-04T14:07:37.9530000 Output 418786 application/pdf Accepted Manuscript true 2020-04-01T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title An infinite dimensional umbral calculus
spellingShingle An infinite dimensional umbral calculus
Dmitri Finkelshtein
Eugene Lytvynov
title_short An infinite dimensional umbral calculus
title_full An infinite dimensional umbral calculus
title_fullStr An infinite dimensional umbral calculus
title_full_unstemmed An infinite dimensional umbral calculus
title_sort An infinite dimensional umbral calculus
author_id_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf
e5b4fef159d90a480b1961cef89a17b7
author_id_fullname_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein
e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov
author Dmitri Finkelshtein
Eugene Lytvynov
author2 Dmitri Finkelshtein
Yuri Kondratiev
Eugene Lytvynov
Maria João Oliveira
format Journal article
container_title Journal of Functional Analysis
container_volume 276
container_issue 12
container_start_page 3714
publishDate 2019
institution Swansea University
issn 00221236
doi_str_mv 10.1016/j.jfa.2019.03.006
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.
published_date 2019-06-16T07:40:48Z
_version_ 1821571597995081728
score 11.047674