Journal article 827 views 142 downloads
An advanced computational bioheat transfer model for a human body with an embedded systemic circulation
Biomechanics and Modeling in Mechanobiology, Volume: 15, Issue: 5, Pages: 1173 - 1190
Swansea University Authors: Alberto Coccarelli , Perumal Nithiarasu
-
PDF | Version of Record
Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0)
Download (6.27MB)
DOI (Published version): 10.1007/s10237-015-0751-4
Abstract
In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding sol...
Published in: | Biomechanics and Modeling in Mechanobiology |
---|---|
ISSN: | 1617-7959 1617-7940 |
Published: |
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa49815 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding solid tissues. In the present configuration, arterial flow is included through a network of elastic vessels. More than a dozen solid segments are employed to represent the heat conduction in the surrounding tissues, and each segment is constituted by a multilayered circular cylinder. Such multi-layers allow flexible delineation of the geometry and incorporation of properties of different tissue types. The coupling of solid tissue and fluid models requires subdivision of the arterial circulation into large and small arteries. The heat exchange between tissues and arterial wall occurs by convection in large vessels and by perfusion in small arteries. The core region, including the heart, provides the inlet conditions for the fluid equations. In the proposed model, shivering, sweating, and perfusion changes constitute the basis of the thermoregulatory system. The equations governing flow and heat transfer in the circulatory system are solved using a locally conservative Galerkin approach, and the heat conduction in the surrounding tissues is solved using a standard implicit backward Euler method. To investigate the effectiveness of the proposed model, temperature field evolutions are monitored at different points of the arterial tree and in the surrounding tissue layers. To study the differences due to flow-induced convection effects on thermal balance, the results of the current model are compared against those of the widely used modelling methodologies. The results show that the convection significantly influences the temperature distribution of the solid tissues in the vicinity of the arteries. Thus, the inner convection has a more predominant role in the human body heat balance than previously thought. To demonstrate its capabilities, the proposed new model is used to study different scenarios, including thermoregulation inactivity and variation in surrounding atmospheric conditions. |
---|---|
Keywords: |
Systemic circulation, Bioheat transfer, Heat conduction, Convection, Perfusion, Thermoregulation, Finite element method |
College: |
Faculty of Science and Engineering |
Issue: |
5 |
Start Page: |
1173 |
End Page: |
1190 |