Journal article 1427 views 561 downloads
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers
Solar RRL, Volume: 3, Issue: 1, Start page: 1800207
Swansea University Authors: Sagar Jain, Matt Carnie , Trystan Watson , James Durrant , Jenny Baker , Wing Chung Tsoi
-
PDF | Accepted Manuscript
Download (1.13MB)
DOI (Published version): 10.1002/solr.201800207
Abstract
Indoor photovoltaics is one of the best sustainable and reliable energy source for low power consumption electronics such as the rapidly growing Internet of Things. Perovskite photovoltaic (PPV) cells with three benchmark device architectures – mesoporous PPV (mPPV) and inverted PPV (iPPV) with alte...
Published in: | Solar RRL |
---|---|
ISSN: | 2367-198X |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa48884 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-02-18T20:07:05Z |
---|---|
last_indexed |
2020-06-30T19:01:28Z |
id |
cronfa48884 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-30T14:21:08.2971948</datestamp><bib-version>v2</bib-version><id>48884</id><entry>2019-02-18</entry><title>Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers</title><swanseaauthors><author><sid>7073e179bb5b82db3e3efd3a8cd07139</sid><firstname>Sagar</firstname><surname>Jain</surname><name>Sagar Jain</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6913b56f36f0c8cd34d8c9040d2df460</sid><ORCID>0000-0003-3530-1957</ORCID><firstname>Jenny</firstname><surname>Baker</surname><name>Jenny Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-18</date><deptcode>EEN</deptcode><abstract>Indoor photovoltaics is one of the best sustainable and reliable energy source for low power consumption electronics such as the rapidly growing Internet of Things. Perovskite photovoltaic (PPV) cells with three benchmark device architectures – mesoporous PPV (mPPV) and inverted PPV (iPPV) with alternative hole transporting layers (HTLs), and carbon‐based PPV (cPPV) are studied under a simulated indoor environment. The mPPV cell using typical Spiro‐OMeTAD as the HTL shows the highest maximum power density (Pmax) of 19.9 μW cm−2 under 200 lux and 115.6 μW cm−2 under 1000 lux (without masking), which is among the best of the indoor PV. Interestingly, when PTAA is used as the HTL in the mPPV cell, the Pmax drops to almost zero under indoor light environment while its performance under one sun remains similar. On the other hand, when PEDOT:PSS is replaced by Poly‐TPD as HTL in the iPPV cell, the Pmax under indoor light improves significantly and is comparable to that of the best mPPV cell. This significant difference in indoor performance correlates well with their leakage current. The HTL‐free cPPV cell, prepared by fully up‐scalable techniques, shows a promising Pmax of 16.3 and 89.4 μW cm−2 under 200 and 1000 lux, respectively. A practical scale 5 × 5cm2 cPPV module is fabricated as a demonstration for real applications.</abstract><type>Journal Article</type><journal>Solar RRL</journal><volume>3</volume><journalNumber>1</journalNumber><paginationStart>1800207</paginationStart><publisher/><issnPrint>2367-198X</issnPrint><keywords/><publishedDay>9</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-01-09</publishedDate><doi>10.1002/solr.201800207</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-30T14:21:08.2971948</lastEdited><Created>2019-02-18T14:33:36.9729939</Created><authors><author><firstname>Harrison Ka Hin</firstname><surname>Lee</surname><order>1</order></author><author><firstname>Jérémy</firstname><surname>Barbé</surname><order>2</order></author><author><firstname>Simone M. P.</firstname><surname>Meroni</surname><order>3</order></author><author><firstname>Tian</firstname><surname>Du</surname><order>4</order></author><author><firstname>Chieh-Ting</firstname><surname>Lin</surname><order>5</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>6</order></author><author><firstname>Joel</firstname><surname>Troughton</surname><order>7</order></author><author><firstname>Sagar</firstname><surname>Jain</surname><order>8</order></author><author><firstname>Francesca De</firstname><surname>Rossi</surname><order>9</order></author><author><firstname>Jennifer</firstname><surname>Baker</surname><order>10</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>11</order></author><author><firstname>Martyn A.</firstname><surname>McLachlan</surname><order>12</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>13</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>14</order></author><author><firstname>Wing C.</firstname><surname>Tsoi</surname><order>15</order></author><author><firstname>Jenny</firstname><surname>Baker</surname><orcid>0000-0003-3530-1957</orcid><order>16</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>17</order></author></authors><documents><document><filename>0048884-18022019144504.pdf</filename><originalFilename>lee2019.pdf</originalFilename><uploaded>2019-02-18T14:45:04.9230000</uploaded><type>Output</type><contentLength>1185119</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-11-23T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-06-30T14:21:08.2971948 v2 48884 2019-02-18 Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers 7073e179bb5b82db3e3efd3a8cd07139 Sagar Jain Sagar Jain true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 6913b56f36f0c8cd34d8c9040d2df460 0000-0003-3530-1957 Jenny Baker Jenny Baker true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 2019-02-18 EEN Indoor photovoltaics is one of the best sustainable and reliable energy source for low power consumption electronics such as the rapidly growing Internet of Things. Perovskite photovoltaic (PPV) cells with three benchmark device architectures – mesoporous PPV (mPPV) and inverted PPV (iPPV) with alternative hole transporting layers (HTLs), and carbon‐based PPV (cPPV) are studied under a simulated indoor environment. The mPPV cell using typical Spiro‐OMeTAD as the HTL shows the highest maximum power density (Pmax) of 19.9 μW cm−2 under 200 lux and 115.6 μW cm−2 under 1000 lux (without masking), which is among the best of the indoor PV. Interestingly, when PTAA is used as the HTL in the mPPV cell, the Pmax drops to almost zero under indoor light environment while its performance under one sun remains similar. On the other hand, when PEDOT:PSS is replaced by Poly‐TPD as HTL in the iPPV cell, the Pmax under indoor light improves significantly and is comparable to that of the best mPPV cell. This significant difference in indoor performance correlates well with their leakage current. The HTL‐free cPPV cell, prepared by fully up‐scalable techniques, shows a promising Pmax of 16.3 and 89.4 μW cm−2 under 200 and 1000 lux, respectively. A practical scale 5 × 5cm2 cPPV module is fabricated as a demonstration for real applications. Journal Article Solar RRL 3 1 1800207 2367-198X 9 1 2019 2019-01-09 10.1002/solr.201800207 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2020-06-30T14:21:08.2971948 2019-02-18T14:33:36.9729939 Harrison Ka Hin Lee 1 Jérémy Barbé 2 Simone M. P. Meroni 3 Tian Du 4 Chieh-Ting Lin 5 Adam Pockett 6 Joel Troughton 7 Sagar Jain 8 Francesca De Rossi 9 Jennifer Baker 10 Matt Carnie 0000-0002-4232-1967 11 Martyn A. McLachlan 12 Trystan Watson 0000-0002-8015-1436 13 James Durrant 0000-0001-8353-7345 14 Wing C. Tsoi 15 Jenny Baker 0000-0003-3530-1957 16 Wing Chung Tsoi 0000-0003-3836-5139 17 0048884-18022019144504.pdf lee2019.pdf 2019-02-18T14:45:04.9230000 Output 1185119 application/pdf Accepted Manuscript true 2019-11-23T00:00:00.0000000 true eng |
title |
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers |
spellingShingle |
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers Sagar Jain Matt Carnie Trystan Watson James Durrant Jenny Baker Wing Chung Tsoi |
title_short |
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers |
title_full |
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers |
title_fullStr |
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers |
title_full_unstemmed |
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers |
title_sort |
Outstanding Indoor Performance of Perovskite Photovoltaic Cells - Effect of Device Architectures and Interlayers |
author_id_str_mv |
7073e179bb5b82db3e3efd3a8cd07139 73b367694366a646b90bb15db32bb8c0 a210327b52472cfe8df9b8108d661457 f3dd64bc260e5c07adfa916c27dbd58a 6913b56f36f0c8cd34d8c9040d2df460 7e5f541df6635a9a8e1a579ff2de5d56 |
author_id_fullname_str_mv |
7073e179bb5b82db3e3efd3a8cd07139_***_Sagar Jain 73b367694366a646b90bb15db32bb8c0_***_Matt Carnie a210327b52472cfe8df9b8108d661457_***_Trystan Watson f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant 6913b56f36f0c8cd34d8c9040d2df460_***_Jenny Baker 7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi |
author |
Sagar Jain Matt Carnie Trystan Watson James Durrant Jenny Baker Wing Chung Tsoi |
author2 |
Harrison Ka Hin Lee Jérémy Barbé Simone M. P. Meroni Tian Du Chieh-Ting Lin Adam Pockett Joel Troughton Sagar Jain Francesca De Rossi Jennifer Baker Matt Carnie Martyn A. McLachlan Trystan Watson James Durrant Wing C. Tsoi Jenny Baker Wing Chung Tsoi |
format |
Journal article |
container_title |
Solar RRL |
container_volume |
3 |
container_issue |
1 |
container_start_page |
1800207 |
publishDate |
2019 |
institution |
Swansea University |
issn |
2367-198X |
doi_str_mv |
10.1002/solr.201800207 |
document_store_str |
1 |
active_str |
0 |
description |
Indoor photovoltaics is one of the best sustainable and reliable energy source for low power consumption electronics such as the rapidly growing Internet of Things. Perovskite photovoltaic (PPV) cells with three benchmark device architectures – mesoporous PPV (mPPV) and inverted PPV (iPPV) with alternative hole transporting layers (HTLs), and carbon‐based PPV (cPPV) are studied under a simulated indoor environment. The mPPV cell using typical Spiro‐OMeTAD as the HTL shows the highest maximum power density (Pmax) of 19.9 μW cm−2 under 200 lux and 115.6 μW cm−2 under 1000 lux (without masking), which is among the best of the indoor PV. Interestingly, when PTAA is used as the HTL in the mPPV cell, the Pmax drops to almost zero under indoor light environment while its performance under one sun remains similar. On the other hand, when PEDOT:PSS is replaced by Poly‐TPD as HTL in the iPPV cell, the Pmax under indoor light improves significantly and is comparable to that of the best mPPV cell. This significant difference in indoor performance correlates well with their leakage current. The HTL‐free cPPV cell, prepared by fully up‐scalable techniques, shows a promising Pmax of 16.3 and 89.4 μW cm−2 under 200 and 1000 lux, respectively. A practical scale 5 × 5cm2 cPPV module is fabricated as a demonstration for real applications. |
published_date |
2019-01-09T03:59:34Z |
_version_ |
1763753039449030656 |
score |
11.036553 |