Book chapter 868 views
Weak Bisimulation as a Congruence in MSOS
Logic, Rewriting, and Concurrency, Volume: 9200, Pages: 519 - 538
Swansea University Authors: Peter Mosses , Ferdinand Vesely
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/978-3-319-23165-5_24
Abstract
MSOS is a variant of structural operational semantics with a natural representation of unobservable transitions. To prove various desirable laws for programming constructs specified in MSOS, bisimulation should disregard unobservable transitions, and it should be a congruence. One approach, followin...
Published in: | Logic, Rewriting, and Concurrency |
---|---|
ISBN: | 978-3-319-23164-8 978-3-319-23165-5 |
ISSN: | 0302-9743 1611-3349 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa48794 |
first_indexed |
2019-02-11T20:04:25Z |
---|---|
last_indexed |
2019-02-21T14:07:28Z |
id |
cronfa48794 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-02-21T12:20:28.4885857</datestamp><bib-version>v2</bib-version><id>48794</id><entry>2019-02-11</entry><title>Weak Bisimulation as a Congruence in MSOS</title><swanseaauthors><author><sid>3f13b8ec315845c81d371f41e772399c</sid><ORCID>0000-0002-5826-7520</ORCID><firstname>Peter</firstname><surname>Mosses</surname><name>Peter Mosses</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e54f54330e5abba1afddbfcb78ba54c1</sid><firstname>Ferdinand</firstname><surname>Vesely</surname><name>Ferdinand Vesely</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-11</date><abstract>MSOS is a variant of structural operational semantics with a natural representation of unobservable transitions. To prove various desirable laws for programming constructs specified in MSOS, bisimulation should disregard unobservable transitions, and it should be a congruence. One approach, following Van Glabbeek, is to add abstraction rules and use strong bisimulation with MSOS specifications in an existing congruence format. Another approach is to use weak bisimulation with specifications in an adaptation of Bloom’s WB Cool congruence format to MSOS. We compare the two approaches, and relate unobservable transitions in MSOS to equations in Rewriting Logic.</abstract><type>Book chapter</type><journal>Logic, Rewriting, and Concurrency</journal><volume>9200</volume><paginationStart>519</paginationStart><paginationEnd>538</paginationEnd><publisher/><isbnPrint>978-3-319-23164-8</isbnPrint><isbnElectronic>978-3-319-23165-5</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords/><publishedDay>27</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-08-27</publishedDate><doi>10.1007/978-3-319-23165-5_24</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-02-21T12:20:28.4885857</lastEdited><Created>2019-02-11T15:35:56.8094862</Created><path><level id="1">College of Science</level><level id="2">College of Science</level></path><authors><author><firstname>Peter</firstname><surname>Mosses</surname><orcid>0000-0002-5826-7520</orcid><order>1</order></author><author><firstname>Ferdinand</firstname><surname>Vesely</surname><order>2</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2019-02-21T12:20:28.4885857 v2 48794 2019-02-11 Weak Bisimulation as a Congruence in MSOS 3f13b8ec315845c81d371f41e772399c 0000-0002-5826-7520 Peter Mosses Peter Mosses true false e54f54330e5abba1afddbfcb78ba54c1 Ferdinand Vesely Ferdinand Vesely true false 2019-02-11 MSOS is a variant of structural operational semantics with a natural representation of unobservable transitions. To prove various desirable laws for programming constructs specified in MSOS, bisimulation should disregard unobservable transitions, and it should be a congruence. One approach, following Van Glabbeek, is to add abstraction rules and use strong bisimulation with MSOS specifications in an existing congruence format. Another approach is to use weak bisimulation with specifications in an adaptation of Bloom’s WB Cool congruence format to MSOS. We compare the two approaches, and relate unobservable transitions in MSOS to equations in Rewriting Logic. Book chapter Logic, Rewriting, and Concurrency 9200 519 538 978-3-319-23164-8 978-3-319-23165-5 0302-9743 1611-3349 27 8 2015 2015-08-27 10.1007/978-3-319-23165-5_24 COLLEGE NANME COLLEGE CODE Swansea University 2019-02-21T12:20:28.4885857 2019-02-11T15:35:56.8094862 College of Science College of Science Peter Mosses 0000-0002-5826-7520 1 Ferdinand Vesely 2 |
title |
Weak Bisimulation as a Congruence in MSOS |
spellingShingle |
Weak Bisimulation as a Congruence in MSOS Peter Mosses Ferdinand Vesely |
title_short |
Weak Bisimulation as a Congruence in MSOS |
title_full |
Weak Bisimulation as a Congruence in MSOS |
title_fullStr |
Weak Bisimulation as a Congruence in MSOS |
title_full_unstemmed |
Weak Bisimulation as a Congruence in MSOS |
title_sort |
Weak Bisimulation as a Congruence in MSOS |
author_id_str_mv |
3f13b8ec315845c81d371f41e772399c e54f54330e5abba1afddbfcb78ba54c1 |
author_id_fullname_str_mv |
3f13b8ec315845c81d371f41e772399c_***_Peter Mosses e54f54330e5abba1afddbfcb78ba54c1_***_Ferdinand Vesely |
author |
Peter Mosses Ferdinand Vesely |
author2 |
Peter Mosses Ferdinand Vesely |
format |
Book chapter |
container_title |
Logic, Rewriting, and Concurrency |
container_volume |
9200 |
container_start_page |
519 |
publishDate |
2015 |
institution |
Swansea University |
isbn |
978-3-319-23164-8 978-3-319-23165-5 |
issn |
0302-9743 1611-3349 |
doi_str_mv |
10.1007/978-3-319-23165-5_24 |
college_str |
College of Science |
hierarchytype |
|
hierarchy_top_id |
collegeofscience |
hierarchy_top_title |
College of Science |
hierarchy_parent_id |
collegeofscience |
hierarchy_parent_title |
College of Science |
department_str |
College of Science{{{_:::_}}}College of Science{{{_:::_}}}College of Science |
document_store_str |
0 |
active_str |
0 |
description |
MSOS is a variant of structural operational semantics with a natural representation of unobservable transitions. To prove various desirable laws for programming constructs specified in MSOS, bisimulation should disregard unobservable transitions, and it should be a congruence. One approach, following Van Glabbeek, is to add abstraction rules and use strong bisimulation with MSOS specifications in an existing congruence format. Another approach is to use weak bisimulation with specifications in an adaptation of Bloom’s WB Cool congruence format to MSOS. We compare the two approaches, and relate unobservable transitions in MSOS to equations in Rewriting Logic. |
published_date |
2015-08-27T04:43:38Z |
_version_ |
1821379258145046528 |
score |
11.3749895 |