No Cover Image

Journal article 959 views 239 downloads

Assessing the potential information content of multicomponent visual signals: a machine learning approach

J. P. Higham, William Allen Orcid Logo

Proceedings of the Royal Society B: Biological Sciences, Volume: 282, Issue: 1802, Pages: 20142284 - 20142284

Swansea University Author: William Allen Orcid Logo

Published in: Proceedings of the Royal Society B: Biological Sciences
ISSN: 0962-8452 1471-2954
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa48723
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-02-11T11:58:00Z
last_indexed 2020-10-03T03:07:37Z
id cronfa48723
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-10-02T13:51:31.4112134</datestamp><bib-version>v2</bib-version><id>48723</id><entry>2019-02-06</entry><title>Assessing the potential information content of multicomponent visual signals: a machine learning approach</title><swanseaauthors><author><sid>d6f01dd06d25fa8804daad86e251b8a5</sid><ORCID>0000-0003-2654-0438</ORCID><firstname>William</firstname><surname>Allen</surname><name>William Allen</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-06</date><deptcode>SBI</deptcode><abstract/><type>Journal Article</type><journal>Proceedings of the Royal Society B: Biological Sciences</journal><volume>282</volume><journalNumber>1802</journalNumber><paginationStart>20142284</paginationStart><paginationEnd>20142284</paginationEnd><publisher/><issnPrint>0962-8452</issnPrint><issnElectronic>1471-2954</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi>https://doi.org/10.1098/rspb.2014.2284</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SBI</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-02T13:51:31.4112134</lastEdited><Created>2019-02-06T16:16:11.5901423</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>J. P.</firstname><surname>Higham</surname><order>1</order></author><author><firstname>William</firstname><surname>Allen</surname><orcid>0000-0003-2654-0438</orcid><order>2</order></author></authors><documents><document><filename>48723__15237__b28767c233064577b6115e1b0e2869e0.pdf</filename><originalFilename>GuidelinesSubmissionsv2.pdf</originalFilename><uploaded>2019-09-12T16:14:05.2600000</uploaded><type>Output</type><contentLength>1690261</contentLength><contentType>application/pdf</contentType><version>Submitted Manuscript Under Review</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-09-12T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>48723__13535__d1ee006ce3d04680882e7291beb0650a.pdf</filename><originalFilename>bastos2019v2.pdf</originalFilename><uploaded>2019-04-24T14:54:08.6670000</uploaded><type>Output</type><contentLength>6855594</contentLength><contentType>application/pdf</contentType><version>Corrected Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-04-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-10-02T13:51:31.4112134 v2 48723 2019-02-06 Assessing the potential information content of multicomponent visual signals: a machine learning approach d6f01dd06d25fa8804daad86e251b8a5 0000-0003-2654-0438 William Allen William Allen true false 2019-02-06 SBI Journal Article Proceedings of the Royal Society B: Biological Sciences 282 1802 20142284 20142284 0962-8452 1471-2954 31 12 2015 2015-12-31 https://doi.org/10.1098/rspb.2014.2284 COLLEGE NANME Biosciences COLLEGE CODE SBI Swansea University 2020-10-02T13:51:31.4112134 2019-02-06T16:16:11.5901423 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences J. P. Higham 1 William Allen 0000-0003-2654-0438 2 48723__15237__b28767c233064577b6115e1b0e2869e0.pdf GuidelinesSubmissionsv2.pdf 2019-09-12T16:14:05.2600000 Output 1690261 application/pdf Submitted Manuscript Under Review true 2019-09-12T00:00:00.0000000 false eng 48723__13535__d1ee006ce3d04680882e7291beb0650a.pdf bastos2019v2.pdf 2019-04-24T14:54:08.6670000 Output 6855594 application/pdf Corrected Version of Record true 2019-04-24T00:00:00.0000000 false eng
title Assessing the potential information content of multicomponent visual signals: a machine learning approach
spellingShingle Assessing the potential information content of multicomponent visual signals: a machine learning approach
William Allen
title_short Assessing the potential information content of multicomponent visual signals: a machine learning approach
title_full Assessing the potential information content of multicomponent visual signals: a machine learning approach
title_fullStr Assessing the potential information content of multicomponent visual signals: a machine learning approach
title_full_unstemmed Assessing the potential information content of multicomponent visual signals: a machine learning approach
title_sort Assessing the potential information content of multicomponent visual signals: a machine learning approach
author_id_str_mv d6f01dd06d25fa8804daad86e251b8a5
author_id_fullname_str_mv d6f01dd06d25fa8804daad86e251b8a5_***_William Allen
author William Allen
author2 J. P. Higham
William Allen
format Journal article
container_title Proceedings of the Royal Society B: Biological Sciences
container_volume 282
container_issue 1802
container_start_page 20142284
publishDate 2015
institution Swansea University
issn 0962-8452
1471-2954
doi_str_mv https://doi.org/10.1098/rspb.2014.2284
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences
document_store_str 1
active_str 0
published_date 2015-12-31T03:59:20Z
_version_ 1763753024848658432
score 11.037056