Journal article 774 views 106 downloads
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations
Electronic Journal of Differential Equations, Volume: 2019, Issue: 10, Pages: 1 - 27
Swansea University Author: Dmitri Finkelshtein
-
PDF | Accepted Manuscript
This work is licensed under a Creative Commons Attribution 4.0 International License.
Download (470.05KB)
Abstract
We consider a reaction-diffusion equation with nonlocal anisotropic diffusion and a linear combination of local and nonlocal monostable-type reactions in a space of bounded functions on R^d. Using the properties of the corresponding semiflow, we prove the existence of monotone traveling waves along...
Published in: | Electronic Journal of Differential Equations |
---|---|
ISSN: | 1072-6691 |
Published: |
601 University Drive, San Marcos, TX 78666, USA
Department of Mathematics, Texas State University
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa48385 |
first_indexed |
2019-01-23T05:00:12Z |
---|---|
last_indexed |
2019-03-11T14:00:29Z |
id |
cronfa48385 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-03-11T12:29:22.4648544</datestamp><bib-version>v2</bib-version><id>48385</id><entry>2019-01-22</entry><title>Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-01-22</date><deptcode>MACS</deptcode><abstract>We consider a reaction-diffusion equation with nonlocal anisotropic diffusion and a linear combination of local and nonlocal monostable-type reactions in a space of bounded functions on R^d. Using the properties of the corresponding semiflow, we prove the existence of monotone traveling waves along those directions where the diffusion kernel is exponentially integrable. Among other properties, we prove continuity, strict monotonicity and exponential integrability of the traveling wave profiles.</abstract><type>Journal Article</type><journal>Electronic Journal of Differential Equations</journal><volume>2019</volume><journalNumber>10</journalNumber><paginationStart>1</paginationStart><paginationEnd>27</paginationEnd><publisher>Department of Mathematics, Texas State University</publisher><placeOfPublication>601 University Drive, San Marcos, TX 78666, USA</placeOfPublication><issnElectronic>1072-6691</issnElectronic><keywords>Nonlocal diffusion; reaction-diffusion equation; Fisher-KPP equation; traveling waves; nonlocal nonlinearity; anisotropic kernels; integral equation.</keywords><publishedDay>22</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-01-22</publishedDate><doi/><url>https://ejde.math.txstate.edu/Volumes/2019/10/abstr.html</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-03-11T12:29:22.4648544</lastEdited><Created>2019-01-22T20:36:49.4561463</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Yuri</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Pasha</firstname><surname>Tkachov</surname><orcid>0000-0002-6773-4506</orcid><order>3</order></author></authors><documents><document><filename>0048385-22012019204219.pdf</filename><originalFilename>FKT-trw_exist.pdf</originalFilename><uploaded>2019-01-22T20:42:19.5870000</uploaded><type>Output</type><contentLength>598682</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-01-22T00:00:00.0000000</embargoDate><documentNotes>This work is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-03-11T12:29:22.4648544 v2 48385 2019-01-22 Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false 2019-01-22 MACS We consider a reaction-diffusion equation with nonlocal anisotropic diffusion and a linear combination of local and nonlocal monostable-type reactions in a space of bounded functions on R^d. Using the properties of the corresponding semiflow, we prove the existence of monotone traveling waves along those directions where the diffusion kernel is exponentially integrable. Among other properties, we prove continuity, strict monotonicity and exponential integrability of the traveling wave profiles. Journal Article Electronic Journal of Differential Equations 2019 10 1 27 Department of Mathematics, Texas State University 601 University Drive, San Marcos, TX 78666, USA 1072-6691 Nonlocal diffusion; reaction-diffusion equation; Fisher-KPP equation; traveling waves; nonlocal nonlinearity; anisotropic kernels; integral equation. 22 1 2019 2019-01-22 https://ejde.math.txstate.edu/Volumes/2019/10/abstr.html COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2019-03-11T12:29:22.4648544 2019-01-22T20:36:49.4561463 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Yuri Kondratiev 2 Pasha Tkachov 0000-0002-6773-4506 3 0048385-22012019204219.pdf FKT-trw_exist.pdf 2019-01-22T20:42:19.5870000 Output 598682 application/pdf Accepted Manuscript true 2019-01-22T00:00:00.0000000 This work is licensed under a Creative Commons Attribution 4.0 International License. true eng |
title |
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations |
spellingShingle |
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations Dmitri Finkelshtein |
title_short |
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations |
title_full |
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations |
title_fullStr |
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations |
title_full_unstemmed |
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations |
title_sort |
Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations |
author_id_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf |
author_id_fullname_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein |
author |
Dmitri Finkelshtein |
author2 |
Dmitri Finkelshtein Yuri Kondratiev Pasha Tkachov |
format |
Journal article |
container_title |
Electronic Journal of Differential Equations |
container_volume |
2019 |
container_issue |
10 |
container_start_page |
1 |
publishDate |
2019 |
institution |
Swansea University |
issn |
1072-6691 |
publisher |
Department of Mathematics, Texas State University |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
https://ejde.math.txstate.edu/Volumes/2019/10/abstr.html |
document_store_str |
1 |
active_str |
0 |
description |
We consider a reaction-diffusion equation with nonlocal anisotropic diffusion and a linear combination of local and nonlocal monostable-type reactions in a space of bounded functions on R^d. Using the properties of the corresponding semiflow, we prove the existence of monotone traveling waves along those directions where the diffusion kernel is exponentially integrable. Among other properties, we prove continuity, strict monotonicity and exponential integrability of the traveling wave profiles. |
published_date |
2019-01-22T19:44:22Z |
_version_ |
1821526523759296512 |
score |
11.047674 |