No Cover Image

Journal article 786 views 415 downloads

Study on electronic and optical properties of the twisted and strained MoS2/PtS2 heterogeneous interface

Shuo Deng, Yan Zhang, Lijie Li Orcid Logo

Applied Surface Science, Volume: 476, Pages: 308 - 316

Swansea University Author: Lijie Li Orcid Logo

Abstract

We report electronic and optical properties of the MoS2/PtS2 heterogeneous interfaces subject to various twisting angles based on the first principles simulation. In order to sustain the structural stability and avoid to have a large size cell, the optimized rotation angles of the MoS2/PtS2 heteroge...

Full description

Published in: Applied Surface Science
ISSN: 0169-4332
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa48171
Abstract: We report electronic and optical properties of the MoS2/PtS2 heterogeneous interfaces subject to various twisting angles based on the first principles simulation. In order to sustain the structural stability and avoid to have a large size cell, the optimized rotation angles of the MoS2/PtS2 heterogeneous interfaces are 19.1°, 30.0° and 40.9°. It is found from the first principle simulation that the absolute passband amplitude of the refractive index, extinction coefficient, reflectivity and absorption coefficient curves under 30.0° rotation angle are 6–12 times higher than 19.1° and 40.9° rotation angles of the MoS2/PtS2 heterogeneous interfaces. Moreover, under the 30.0° twisting angle, the absorption coefficient in the absorption spectrum can reach to or above 105/cm. The absorption spectrum has a red-shift and a broadening effect with the tensile strain, from roughly 700 nm (0% externally strain) to 1050 nm (5% externally strain). The prominent optical properties of MoS2/PtS2 heterogeneous interface under 30° rotation angle still exist after taking into consideration the spin-orbit coupling (SOC) effect. These results suggest that the MoS2/PtS2 heterogeneous interfaces will have great potential applications in tunable optoelectronic devices.
Keywords: MoS2/PtS2 heterogeneous structure, Twisting angle, Strain engineering, Optical performance
College: Faculty of Science and Engineering
Start Page: 308
End Page: 316