No Cover Image

Journal article 921 views 162 downloads

Precision ultrasound sensing on a chip

Sahar Basiri Esfahani Orcid Logo, Ardalan Armin Orcid Logo, Stefan Forstner, Warwick P. Bowen

Nature Communications, Volume: 10, Issue: 1

Swansea University Authors: Sahar Basiri Esfahani Orcid Logo, Ardalan Armin Orcid Logo

  • s41467-018-08038-4.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).

    Download (1.39MB)

Abstract

Ultrasound sensors have wide applications across science and technology. However, improved sensitivity is required for both miniaturisation and increased spatial resolution. Here, we introduce cavity optomechanical ultrasound sensing, where dual optical and mechanical resonances enhance the ultrasou...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa48134
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-01-10T14:00:58Z
last_indexed 2020-06-23T18:59:22Z
id cronfa48134
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-06-23T15:30:22.9154432</datestamp><bib-version>v2</bib-version><id>48134</id><entry>2019-01-10</entry><title>Precision ultrasound sensing on a chip</title><swanseaauthors><author><sid>883ba919c55d2c799d7a941803b2e93a</sid><ORCID>0000-0001-7634-158X</ORCID><firstname>Sahar</firstname><surname>Basiri Esfahani</surname><name>Sahar Basiri Esfahani</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b270622d739d81e131bec7a819e2fd</sid><ORCID>0000-0002-6129-5354</ORCID><firstname>Ardalan</firstname><surname>Armin</surname><name>Ardalan Armin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-01-10</date><deptcode>SPH</deptcode><abstract>Ultrasound sensors have wide applications across science and technology. However, improved sensitivity is required for both miniaturisation and increased spatial resolution. Here, we introduce cavity optomechanical ultrasound sensing, where dual optical and mechanical resonances enhance the ultrasound signal. We achieve noise equivalent pressures of 8-300 micro Pascal per root Hertz at kilohertz to megahertz frequencies in a microscale silicon-chip-based sensor with &amp;#62;120 dB dynamic range. The sensitivity far exceeds similar sensors that use an optical resonance alone and, normalised to the sensing area, surpasses previous air-coupled ultrasound sensors by several orders of magnitude. The noise floor is dominated by collisions from molecules in the gas within which the acoustic wave propagates. This approach to acoustic sensing could find applications ranging from biomedical diagnostics, to autonomous navigation, trace gas sensing, and scientific exploration of the metabolism-induced-vibrations of single cells.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>10</volume><journalNumber>1</journalNumber><publisher/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>10</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-01-10</publishedDate><doi>10.1038/s41467-018-08038-4</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-23T15:30:22.9154432</lastEdited><Created>2019-01-10T10:40:36.2836376</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Sahar</firstname><surname>Basiri Esfahani</surname><orcid>0000-0001-7634-158X</orcid><order>1</order></author><author><firstname>Ardalan</firstname><surname>Armin</surname><orcid>0000-0002-6129-5354</orcid><order>2</order></author><author><firstname>Stefan</firstname><surname>Forstner</surname><order>3</order></author><author><firstname>Warwick P.</firstname><surname>Bowen</surname><order>4</order></author></authors><documents><document><filename>0048134-10012019104246.pdf</filename><originalFilename>s41467-018-08038-4.pdf</originalFilename><uploaded>2019-01-10T10:42:46.3370000</uploaded><type>Output</type><contentLength>1512621</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-01-10T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2020-06-23T15:30:22.9154432 v2 48134 2019-01-10 Precision ultrasound sensing on a chip 883ba919c55d2c799d7a941803b2e93a 0000-0001-7634-158X Sahar Basiri Esfahani Sahar Basiri Esfahani true false 22b270622d739d81e131bec7a819e2fd 0000-0002-6129-5354 Ardalan Armin Ardalan Armin true false 2019-01-10 SPH Ultrasound sensors have wide applications across science and technology. However, improved sensitivity is required for both miniaturisation and increased spatial resolution. Here, we introduce cavity optomechanical ultrasound sensing, where dual optical and mechanical resonances enhance the ultrasound signal. We achieve noise equivalent pressures of 8-300 micro Pascal per root Hertz at kilohertz to megahertz frequencies in a microscale silicon-chip-based sensor with &#62;120 dB dynamic range. The sensitivity far exceeds similar sensors that use an optical resonance alone and, normalised to the sensing area, surpasses previous air-coupled ultrasound sensors by several orders of magnitude. The noise floor is dominated by collisions from molecules in the gas within which the acoustic wave propagates. This approach to acoustic sensing could find applications ranging from biomedical diagnostics, to autonomous navigation, trace gas sensing, and scientific exploration of the metabolism-induced-vibrations of single cells. Journal Article Nature Communications 10 1 2041-1723 10 1 2019 2019-01-10 10.1038/s41467-018-08038-4 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2020-06-23T15:30:22.9154432 2019-01-10T10:40:36.2836376 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Sahar Basiri Esfahani 0000-0001-7634-158X 1 Ardalan Armin 0000-0002-6129-5354 2 Stefan Forstner 3 Warwick P. Bowen 4 0048134-10012019104246.pdf s41467-018-08038-4.pdf 2019-01-10T10:42:46.3370000 Output 1512621 application/pdf Version of Record true 2019-01-10T00:00:00.0000000 Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/
title Precision ultrasound sensing on a chip
spellingShingle Precision ultrasound sensing on a chip
Sahar Basiri Esfahani
Ardalan Armin
title_short Precision ultrasound sensing on a chip
title_full Precision ultrasound sensing on a chip
title_fullStr Precision ultrasound sensing on a chip
title_full_unstemmed Precision ultrasound sensing on a chip
title_sort Precision ultrasound sensing on a chip
author_id_str_mv 883ba919c55d2c799d7a941803b2e93a
22b270622d739d81e131bec7a819e2fd
author_id_fullname_str_mv 883ba919c55d2c799d7a941803b2e93a_***_Sahar Basiri Esfahani
22b270622d739d81e131bec7a819e2fd_***_Ardalan Armin
author Sahar Basiri Esfahani
Ardalan Armin
author2 Sahar Basiri Esfahani
Ardalan Armin
Stefan Forstner
Warwick P. Bowen
format Journal article
container_title Nature Communications
container_volume 10
container_issue 1
publishDate 2019
institution Swansea University
issn 2041-1723
doi_str_mv 10.1038/s41467-018-08038-4
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description Ultrasound sensors have wide applications across science and technology. However, improved sensitivity is required for both miniaturisation and increased spatial resolution. Here, we introduce cavity optomechanical ultrasound sensing, where dual optical and mechanical resonances enhance the ultrasound signal. We achieve noise equivalent pressures of 8-300 micro Pascal per root Hertz at kilohertz to megahertz frequencies in a microscale silicon-chip-based sensor with &#62;120 dB dynamic range. The sensitivity far exceeds similar sensors that use an optical resonance alone and, normalised to the sensing area, surpasses previous air-coupled ultrasound sensors by several orders of magnitude. The noise floor is dominated by collisions from molecules in the gas within which the acoustic wave propagates. This approach to acoustic sensing could find applications ranging from biomedical diagnostics, to autonomous navigation, trace gas sensing, and scientific exploration of the metabolism-induced-vibrations of single cells.
published_date 2019-01-10T03:58:25Z
_version_ 1763752967718043648
score 11.014358