Journal article 1161 views 354 downloads
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method
Engineering Computations
Swansea University Author: Yuntian Feng
-
PDF | Accepted Manuscript
Download (1.66MB)
DOI (Published version): 10.1108/EC-02-2018-0093
Abstract
PurposeSand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique ins...
Published in: | Engineering Computations |
---|---|
ISSN: | 0264-4401 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa47970 |
first_indexed |
2018-12-13T20:02:08Z |
---|---|
last_indexed |
2019-02-04T20:01:09Z |
id |
cronfa47970 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-02-04T14:36:14.9987725</datestamp><bib-version>v2</bib-version><id>47970</id><entry>2018-12-13</entry><title>Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-12-13</date><deptcode>ACEM</deptcode><abstract>PurposeSand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation.Design/methodology/approachThe mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values.FindingsIt is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.Originality/valueA novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.</abstract><type>Journal Article</type><journal>Engineering Computations</journal><publisher/><issnPrint>0264-4401</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1108/EC-02-2018-0093</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-02-04T14:36:14.9987725</lastEdited><Created>2018-12-13T16:53:31.5499522</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Min</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Y. T.</firstname><surname>Feng</surname><order>2</order></author><author><firstname>Ting T.</firstname><surname>Zhao</surname><order>3</order></author><author><firstname>Yong</firstname><surname>Wang</surname><order>4</order></author><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>5</order></author></authors><documents><document><filename>0047970-13122018165443.pdf</filename><originalFilename>wang2018(10).pdf</originalFilename><uploaded>2018-12-13T16:54:43.9870000</uploaded><type>Output</type><contentLength>1734290</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-02-04T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-02-04T14:36:14.9987725 v2 47970 2018-12-13 Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 2018-12-13 ACEM PurposeSand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation.Design/methodology/approachThe mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values.FindingsIt is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.Originality/valueA novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured. Journal Article Engineering Computations 0264-4401 31 12 2019 2019-12-31 10.1108/EC-02-2018-0093 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2019-02-04T14:36:14.9987725 2018-12-13T16:53:31.5499522 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Min Wang 1 Y. T. Feng 2 Ting T. Zhao 3 Yong Wang 4 Yuntian Feng 0000-0002-6396-8698 5 0047970-13122018165443.pdf wang2018(10).pdf 2018-12-13T16:54:43.9870000 Output 1734290 application/pdf Accepted Manuscript true 2019-02-04T00:00:00.0000000 true eng |
title |
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method |
spellingShingle |
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method Yuntian Feng |
title_short |
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method |
title_full |
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method |
title_fullStr |
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method |
title_full_unstemmed |
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method |
title_sort |
Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method |
author_id_str_mv |
d66794f9c1357969a5badf654f960275 |
author_id_fullname_str_mv |
d66794f9c1357969a5badf654f960275_***_Yuntian Feng |
author |
Yuntian Feng |
author2 |
Min Wang Y. T. Feng Ting T. Zhao Yong Wang Yuntian Feng |
format |
Journal article |
container_title |
Engineering Computations |
publishDate |
2019 |
institution |
Swansea University |
issn |
0264-4401 |
doi_str_mv |
10.1108/EC-02-2018-0093 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
PurposeSand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation.Design/methodology/approachThe mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values.FindingsIt is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.Originality/valueA novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured. |
published_date |
2019-12-31T07:38:53Z |
_version_ |
1821390283982503936 |
score |
11.054791 |