Journal article 977 views 188 downloads
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
Martin Grothaus,
Feng-yu Wang
The Annals of Probability, Volume: 47, Issue: 5, Pages: 2930 - 2952
Swansea University Author: Feng-yu Wang
-
PDF | Accepted Manuscript
Download (301.65KB)
DOI (Published version): 10.1214/18-aop1328
Abstract
For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincaré inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes,...
Published in: | The Annals of Probability |
---|---|
ISSN: | 0091-1798 |
Published: |
Institute of Mathematical Statistics
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa46123 |
first_indexed |
2018-11-28T05:19:44Z |
---|---|
last_indexed |
2023-03-14T03:59:16Z |
id |
cronfa46123 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-03-13T11:56:33.0468901</datestamp><bib-version>v2</bib-version><id>46123</id><entry>2018-11-28</entry><title>Weak Poincaré inequalities for convergence rate of degenerate diffusion processes</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-11-28</date><abstract>For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincaré inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes, so that the study of hypocoercivity is extended. Concrete examples are presented.</abstract><type>Journal Article</type><journal>The Annals of Probability</journal><volume>47</volume><journalNumber>5</journalNumber><paginationStart>2930</paginationStart><paginationEnd>2952</paginationEnd><publisher>Institute of Mathematical Statistics</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0091-1798</issnPrint><issnElectronic/><keywords>Convergence rate , Degenerate diffusion semigroup , hypocercivity , Weak Poincaré inequality</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-09-01</publishedDate><doi>10.1214/18-aop1328</doi><url>http://dx.doi.org/10.1214/18-aop1328</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-03-13T11:56:33.0468901</lastEdited><Created>2018-11-28T01:45:35.9318903</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Martin</firstname><surname>Grothaus</surname><order>1</order></author><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>2</order></author></authors><documents><document><filename>46123__12661__a5c7aab048f949ed9eac5bff23dde3ba.pdf</filename><originalFilename>46123.pdf</originalFilename><uploaded>2019-02-01T13:45:03.2400000</uploaded><type>Output</type><contentLength>308892</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-03-13T11:56:33.0468901 v2 46123 2018-11-28 Weak Poincaré inequalities for convergence rate of degenerate diffusion processes 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2018-11-28 For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincaré inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes, so that the study of hypocoercivity is extended. Concrete examples are presented. Journal Article The Annals of Probability 47 5 2930 2952 Institute of Mathematical Statistics 0091-1798 Convergence rate , Degenerate diffusion semigroup , hypocercivity , Weak Poincaré inequality 1 9 2019 2019-09-01 10.1214/18-aop1328 http://dx.doi.org/10.1214/18-aop1328 COLLEGE NANME COLLEGE CODE Swansea University 2023-03-13T11:56:33.0468901 2018-11-28T01:45:35.9318903 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Martin Grothaus 1 Feng-yu Wang 2 46123__12661__a5c7aab048f949ed9eac5bff23dde3ba.pdf 46123.pdf 2019-02-01T13:45:03.2400000 Output 308892 application/pdf Accepted Manuscript true true eng |
title |
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes |
spellingShingle |
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes Feng-yu Wang |
title_short |
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes |
title_full |
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes |
title_fullStr |
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes |
title_full_unstemmed |
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes |
title_sort |
Weak Poincaré inequalities for convergence rate of degenerate diffusion processes |
author_id_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de |
author_id_fullname_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang |
author |
Feng-yu Wang |
author2 |
Martin Grothaus Feng-yu Wang |
format |
Journal article |
container_title |
The Annals of Probability |
container_volume |
47 |
container_issue |
5 |
container_start_page |
2930 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0091-1798 |
doi_str_mv |
10.1214/18-aop1328 |
publisher |
Institute of Mathematical Statistics |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://dx.doi.org/10.1214/18-aop1328 |
document_store_str |
1 |
active_str |
0 |
description |
For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincaré inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes, so that the study of hypocoercivity is extended. Concrete examples are presented. |
published_date |
2019-09-01T07:38:18Z |
_version_ |
1821390246938411008 |
score |
11.04748 |