No Cover Image

Journal article 977 views 188 downloads

Weak Poincaré inequalities for convergence rate of degenerate diffusion processes

Martin Grothaus, Feng-yu Wang

The Annals of Probability, Volume: 47, Issue: 5, Pages: 2930 - 2952

Swansea University Author: Feng-yu Wang

Check full text

DOI (Published version): 10.1214/18-aop1328

Abstract

For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincaré inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes,...

Full description

Published in: The Annals of Probability
ISSN: 0091-1798
Published: Institute of Mathematical Statistics 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa46123
first_indexed 2018-11-28T05:19:44Z
last_indexed 2023-03-14T03:59:16Z
id cronfa46123
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-03-13T11:56:33.0468901</datestamp><bib-version>v2</bib-version><id>46123</id><entry>2018-11-28</entry><title>Weak Poincar&#xE9; inequalities for convergence rate of degenerate diffusion processes</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-11-28</date><abstract>For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincar&#xE9; inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes, so that the study of hypocoercivity is extended. Concrete examples are presented.</abstract><type>Journal Article</type><journal>The Annals of Probability</journal><volume>47</volume><journalNumber>5</journalNumber><paginationStart>2930</paginationStart><paginationEnd>2952</paginationEnd><publisher>Institute of Mathematical Statistics</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0091-1798</issnPrint><issnElectronic/><keywords>Convergence rate , Degenerate diffusion semigroup , hypocercivity , Weak Poincar&#xE9; inequality</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-09-01</publishedDate><doi>10.1214/18-aop1328</doi><url>http://dx.doi.org/10.1214/18-aop1328</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-03-13T11:56:33.0468901</lastEdited><Created>2018-11-28T01:45:35.9318903</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Martin</firstname><surname>Grothaus</surname><order>1</order></author><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>2</order></author></authors><documents><document><filename>46123__12661__a5c7aab048f949ed9eac5bff23dde3ba.pdf</filename><originalFilename>46123.pdf</originalFilename><uploaded>2019-02-01T13:45:03.2400000</uploaded><type>Output</type><contentLength>308892</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2023-03-13T11:56:33.0468901 v2 46123 2018-11-28 Weak Poincaré inequalities for convergence rate of degenerate diffusion processes 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2018-11-28 For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincaré inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes, so that the study of hypocoercivity is extended. Concrete examples are presented. Journal Article The Annals of Probability 47 5 2930 2952 Institute of Mathematical Statistics 0091-1798 Convergence rate , Degenerate diffusion semigroup , hypocercivity , Weak Poincaré inequality 1 9 2019 2019-09-01 10.1214/18-aop1328 http://dx.doi.org/10.1214/18-aop1328 COLLEGE NANME COLLEGE CODE Swansea University 2023-03-13T11:56:33.0468901 2018-11-28T01:45:35.9318903 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Martin Grothaus 1 Feng-yu Wang 2 46123__12661__a5c7aab048f949ed9eac5bff23dde3ba.pdf 46123.pdf 2019-02-01T13:45:03.2400000 Output 308892 application/pdf Accepted Manuscript true true eng
title Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
spellingShingle Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
Feng-yu Wang
title_short Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
title_full Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
title_fullStr Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
title_full_unstemmed Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
title_sort Weak Poincaré inequalities for convergence rate of degenerate diffusion processes
author_id_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de
author_id_fullname_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang
author Feng-yu Wang
author2 Martin Grothaus
Feng-yu Wang
format Journal article
container_title The Annals of Probability
container_volume 47
container_issue 5
container_start_page 2930
publishDate 2019
institution Swansea University
issn 0091-1798
doi_str_mv 10.1214/18-aop1328
publisher Institute of Mathematical Statistics
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://dx.doi.org/10.1214/18-aop1328
document_store_str 1
active_str 0
description For a contraction C0-semigroup on a separable Hilbert space, the decay rate is estimated by using the weak Poincaré inequalities for the symmetric and antisymmetric part of the generator. As applications, nonexponential convergence rate is characterized for a class of degenerate diffusion processes, so that the study of hypocoercivity is extended. Concrete examples are presented.
published_date 2019-09-01T07:38:18Z
_version_ 1821390246938411008
score 11.04748