Journal article 1087 views 271 downloads
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach
The Lancet, Volume: 392, Start page: S9
Swansea University Authors: Shang-ming Zhou , Xianghua Xie
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (127.07KB)
DOI (Published version): 10.1016/S0140-6736(18)32166-4
Abstract
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach
Published in: | The Lancet |
---|---|
ISSN: | 01406736 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa45957 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-11-16T20:18:30Z |
---|---|
last_indexed |
2019-02-11T11:55:33Z |
id |
cronfa45957 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-02-07T09:21:10.0855149</datestamp><bib-version>v2</bib-version><id>45957</id><entry>2018-11-16</entry><title>Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach</title><swanseaauthors><author><sid>118578a62021ba8ef61398da0a8750da</sid><ORCID>0000-0002-0719-9353</ORCID><firstname>Shang-ming</firstname><surname>Zhou</surname><name>Shang-ming Zhou</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-11-16</date><deptcode>BMS</deptcode><abstract/><type>Journal Article</type><journal>The Lancet</journal><volume>392</volume><paginationStart>S9</paginationStart><publisher/><issnPrint>01406736</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/S0140-6736(18)32166-4</doi><url/><notes/><college>COLLEGE NANME</college><department>Biomedical Sciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BMS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-02-07T09:21:10.0855149</lastEdited><Created>2018-11-16T14:22:43.5395861</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Shang-ming</firstname><surname>Zhou</surname><orcid>0000-0002-0719-9353</orcid><order>1</order></author><author><firstname>Gavin</firstname><surname>Tsang</surname><order>2</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>3</order></author><author><firstname>Lin</firstname><surname>Huo</surname><order>4</order></author><author><firstname>Sinead</firstname><surname>Brophy</surname><order>5</order></author><author><firstname>Ronan A</firstname><surname>Lyons</surname><order>6</order></author></authors><documents><document><filename>0045957-07022019091712.pdf</filename><originalFilename>45957.pdf</originalFilename><uploaded>2019-02-07T09:17:12.4030000</uploaded><type>Output</type><contentLength>105392</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-02-06T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-02-07T09:21:10.0855149 v2 45957 2018-11-16 Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach 118578a62021ba8ef61398da0a8750da 0000-0002-0719-9353 Shang-ming Zhou Shang-ming Zhou true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2018-11-16 BMS Journal Article The Lancet 392 S9 01406736 31 12 2018 2018-12-31 10.1016/S0140-6736(18)32166-4 COLLEGE NANME Biomedical Sciences COLLEGE CODE BMS Swansea University 2019-02-07T09:21:10.0855149 2018-11-16T14:22:43.5395861 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Shang-ming Zhou 0000-0002-0719-9353 1 Gavin Tsang 2 Xianghua Xie 0000-0002-2701-8660 3 Lin Huo 4 Sinead Brophy 5 Ronan A Lyons 6 0045957-07022019091712.pdf 45957.pdf 2019-02-07T09:17:12.4030000 Output 105392 application/pdf Accepted Manuscript true 2019-02-06T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng |
title |
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach |
spellingShingle |
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach Shang-ming Zhou Xianghua Xie |
title_short |
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach |
title_full |
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach |
title_fullStr |
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach |
title_full_unstemmed |
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach |
title_sort |
Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach |
author_id_str_mv |
118578a62021ba8ef61398da0a8750da b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
118578a62021ba8ef61398da0a8750da_***_Shang-ming Zhou b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Shang-ming Zhou Xianghua Xie |
author2 |
Shang-ming Zhou Gavin Tsang Xianghua Xie Lin Huo Sinead Brophy Ronan A Lyons |
format |
Journal article |
container_title |
The Lancet |
container_volume |
392 |
container_start_page |
S9 |
publishDate |
2018 |
institution |
Swansea University |
issn |
01406736 |
doi_str_mv |
10.1016/S0140-6736(18)32166-4 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
published_date |
2018-12-31T03:57:38Z |
_version_ |
1763752918049095680 |
score |
11.036684 |