Journal article 1077 views 118 downloads
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data
International Journal of Population Data Science, Volume: 3, Issue: 4
Swansea University Authors: Joseph Hollinghurst, Rich Fry , Ashley Akbari , Sarah Rodgers
-
PDF | Version of Record
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Download (225.22KB)
DOI (Published version): 10.23889/ijpds.v3i4.893
Abstract
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data
Published in: | International Journal of Population Data Science |
---|---|
ISSN: | 2399-4908 |
Published: |
Banff, Canada
Swansea University
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa44318 |
first_indexed |
2018-09-18T18:56:58Z |
---|---|
last_indexed |
2018-10-15T19:19:14Z |
id |
cronfa44318 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-10-15T15:54:28.7207341</datestamp><bib-version>v2</bib-version><id>44318</id><entry>2018-09-18</entry><title>Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data</title><swanseaauthors><author><sid>d7c51b69270b644a11b904629fe56ab0</sid><firstname>Joseph</firstname><surname>Hollinghurst</surname><name>Joseph Hollinghurst</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d499b898d447b62c81b2c122598870e0</sid><ORCID>0000-0002-7968-6679</ORCID><firstname>Rich</firstname><surname>Fry</surname><name>Rich Fry</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e81e94dea293640575619d15baf34a35</sid><ORCID>0000-0002-4483-0845</ORCID><firstname>Sarah</firstname><surname>Rodgers</surname><name>Sarah Rodgers</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-09-18</date><deptcode>MEDS</deptcode><abstract/><type>Journal Article</type><journal>International Journal of Population Data Science</journal><volume>3</volume><journalNumber>4</journalNumber><publisher>Swansea University</publisher><placeOfPublication>Banff, Canada</placeOfPublication><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>5</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-09-05</publishedDate><doi>10.23889/ijpds.v3i4.893</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-10-15T15:54:28.7207341</lastEdited><Created>2018-09-18T16:42:04.6601286</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Joseph</firstname><surname>Hollinghurst</surname><order>1</order></author><author><firstname>Rich</firstname><surname>Fry</surname><orcid>0000-0002-7968-6679</orcid><order>2</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>3</order></author><author><firstname>Sarah</firstname><surname>Rodgers</surname><orcid>0000-0002-4483-0845</orcid><order>4</order></author></authors><documents><document><filename>0044318-15102018155207.pdf</filename><originalFilename>44318.pdf</originalFilename><uploaded>2018-10-15T15:52:07.0230000</uploaded><type>Output</type><contentLength>201647</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-10-15T00:00:00.0000000</embargoDate><documentNotes>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-10-15T15:54:28.7207341 v2 44318 2018-09-18 Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data d7c51b69270b644a11b904629fe56ab0 Joseph Hollinghurst Joseph Hollinghurst true false d499b898d447b62c81b2c122598870e0 0000-0002-7968-6679 Rich Fry Rich Fry true false aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false e81e94dea293640575619d15baf34a35 0000-0002-4483-0845 Sarah Rodgers Sarah Rodgers true false 2018-09-18 MEDS Journal Article International Journal of Population Data Science 3 4 Swansea University Banff, Canada 2399-4908 5 9 2018 2018-09-05 10.23889/ijpds.v3i4.893 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2018-10-15T15:54:28.7207341 2018-09-18T16:42:04.6601286 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Joseph Hollinghurst 1 Rich Fry 0000-0002-7968-6679 2 Ashley Akbari 0000-0003-0814-0801 3 Sarah Rodgers 0000-0002-4483-0845 4 0044318-15102018155207.pdf 44318.pdf 2018-10-15T15:52:07.0230000 Output 201647 application/pdf Version of Record true 2018-10-15T00:00:00.0000000 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data |
spellingShingle |
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data Joseph Hollinghurst Rich Fry Ashley Akbari Sarah Rodgers |
title_short |
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data |
title_full |
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data |
title_fullStr |
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data |
title_full_unstemmed |
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data |
title_sort |
Using Residential Anonymous Linking Fields to Identify Vulnerable Populations in Administrative Data |
author_id_str_mv |
d7c51b69270b644a11b904629fe56ab0 d499b898d447b62c81b2c122598870e0 aa1b025ec0243f708bb5eb0a93d6fb52 e81e94dea293640575619d15baf34a35 |
author_id_fullname_str_mv |
d7c51b69270b644a11b904629fe56ab0_***_Joseph Hollinghurst d499b898d447b62c81b2c122598870e0_***_Rich Fry aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari e81e94dea293640575619d15baf34a35_***_Sarah Rodgers |
author |
Joseph Hollinghurst Rich Fry Ashley Akbari Sarah Rodgers |
author2 |
Joseph Hollinghurst Rich Fry Ashley Akbari Sarah Rodgers |
format |
Journal article |
container_title |
International Journal of Population Data Science |
container_volume |
3 |
container_issue |
4 |
publishDate |
2018 |
institution |
Swansea University |
issn |
2399-4908 |
doi_str_mv |
10.23889/ijpds.v3i4.893 |
publisher |
Swansea University |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
document_store_str |
1 |
active_str |
0 |
published_date |
2018-09-05T19:32:55Z |
_version_ |
1821344609163280384 |
score |
11.04748 |