No Cover Image

Journal article 1204 views 182 downloads

Observation of the 1S–2P Lyman-α transition in antihydrogen

M. Ahmadi, B. X. R. Alves, Christopher Baker Orcid Logo, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, Michael Charlton, S. Cohen, R. Collister, Stefan Eriksson Orcid Logo, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, E. D. Hunter, Aled Isaac Orcid Logo, M. A. Johnson, Jack Jones, S. A. Jones, S. Jonsell, A. Khramov, P. Knapp, L. Kurchaninov, Niels Madsen Orcid Logo, Daniel Maxwell Orcid Logo, J. T. K. McKenna, S. Menary, J. M. Michan, T. Momose, J. J. Munich, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, D. M. Starko, G. Stutter, C. So, T. D. Tharp, R. I. Thompson, Dirk van der Werf Orcid Logo, J. S. Wurtele

Nature, Volume: 561, Issue: 7722, Pages: 211 - 215

Swansea University Authors: Christopher Baker Orcid Logo, Michael Charlton, Stefan Eriksson Orcid Logo, Aled Isaac Orcid Logo, Jack Jones, Niels Madsen Orcid Logo, Daniel Maxwell Orcid Logo, Dirk van der Werf Orcid Logo

  • 43610.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution 4.0 International License.

    Download (1.68MB)

Abstract

In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Si...

Full description

Published in: Nature
ISSN: 0028-0836 1476-4687
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa43610
first_indexed 2018-09-02T19:46:08Z
last_indexed 2023-01-11T14:20:17Z
id cronfa43610
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-11-09T15:39:26.7829492</datestamp><bib-version>v2</bib-version><id>43610</id><entry>2018-09-02</entry><title>Observation of the 1S&#x2013;2P Lyman-&#x3B1; transition in antihydrogen</title><swanseaauthors><author><sid>0c72afb63bd0c6089fc5b60bd096103e</sid><ORCID>0000-0002-9448-8419</ORCID><firstname>Christopher</firstname><surname>Baker</surname><name>Christopher Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>785cbd474febb1bfa9c0e14abaf9c4a8</sid><ORCID>0000-0002-5390-1879</ORCID><firstname>Stefan</firstname><surname>Eriksson</surname><name>Stefan Eriksson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06d7ed42719ef7bb697cf780c63e26f0</sid><ORCID>0000-0002-7813-1903</ORCID><firstname>Aled</firstname><surname>Isaac</surname><name>Aled Isaac</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a1fd0a804e977beb3835bad353db5f72</sid><firstname>Jack</firstname><surname>Jones</surname><name>Jack Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e8ebdf12e608884a8d4ea4af35b89b46</sid><ORCID>0000-0001-5178-9492</ORCID><firstname>Daniel</firstname><surname>Maxwell</surname><name>Daniel Maxwell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-09-02</date><deptcode>EAAS</deptcode><abstract>In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-&#x3B1; line&#x2014;the 1S&#x2013;2P transition at a wavelength of 121.6 nanometres&#x2014;have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called &#x2018;Lyman-&#x3B1; forest&#x2019;3 of absorption lines at different redshifts. Here we report the observation of the Lyman-&#x3B1; transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S&#x2013;2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 &#xB1; 0.12 gigahertz (1&#x3C3; uncertainty) and agrees with the prediction for hydrogen to a precision of 5&#x2009;&#xD7;&#x2009;10&#x2212;8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S&#x2013;2S transitions6,7 recently observed in antihydrogen, the Lyman-&#x3B1; transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.</abstract><type>Journal Article</type><journal>Nature</journal><volume>561</volume><journalNumber>7722</journalNumber><paginationStart>211</paginationStart><paginationEnd>215</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0028-0836</issnPrint><issnElectronic>1476-4687</issnElectronic><keywords/><publishedDay>13</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-09-13</publishedDate><doi>10.1038/s41586-018-0435-1</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported by: the European Research Council through its Advanced Grant programme (to J.S.H.); CNPq, FAPERJ, RENAFAE (Brazil); NSERC, CFI, NRC/TRIUMF, EHPDS/EHDRS (Canada); FNU (Nice Centre), Carlsberg Foundation (Denmark); ISF (Israel); STFC, EPSRC, the Royal Society and the Leverhulme Trust (UK); DOE, NSF (USA); and VR (Sweden).</funders><projectreference/><lastEdited>2022-11-09T15:39:26.7829492</lastEdited><Created>2018-09-02T14:03:27.1258179</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>M.</firstname><surname>Ahmadi</surname><order>1</order></author><author><firstname>B. X. R.</firstname><surname>Alves</surname><order>2</order></author><author><firstname>Christopher</firstname><surname>Baker</surname><orcid>0000-0002-9448-8419</orcid><order>3</order></author><author><firstname>W.</firstname><surname>Bertsche</surname><order>4</order></author><author><firstname>A.</firstname><surname>Capra</surname><order>5</order></author><author><firstname>C.</firstname><surname>Carruth</surname><order>6</order></author><author><firstname>C. L.</firstname><surname>Cesar</surname><order>7</order></author><author><firstname>Michael</firstname><surname>Charlton</surname><order>8</order></author><author><firstname>S.</firstname><surname>Cohen</surname><order>9</order></author><author><firstname>R.</firstname><surname>Collister</surname><order>10</order></author><author><firstname>Stefan</firstname><surname>Eriksson</surname><orcid>0000-0002-5390-1879</orcid><order>11</order></author><author><firstname>A.</firstname><surname>Evans</surname><order>12</order></author><author><firstname>N.</firstname><surname>Evetts</surname><order>13</order></author><author><firstname>J.</firstname><surname>Fajans</surname><order>14</order></author><author><firstname>T.</firstname><surname>Friesen</surname><order>15</order></author><author><firstname>M. C.</firstname><surname>Fujiwara</surname><order>16</order></author><author><firstname>D. R.</firstname><surname>Gill</surname><order>17</order></author><author><firstname>J. S.</firstname><surname>Hangst</surname><order>18</order></author><author><firstname>W. N.</firstname><surname>Hardy</surname><order>19</order></author><author><firstname>M. E.</firstname><surname>Hayden</surname><order>20</order></author><author><firstname>E. D.</firstname><surname>Hunter</surname><order>21</order></author><author><firstname>Aled</firstname><surname>Isaac</surname><orcid>0000-0002-7813-1903</orcid><order>22</order></author><author><firstname>M. A.</firstname><surname>Johnson</surname><order>23</order></author><author><firstname>Jack</firstname><surname>Jones</surname><order>24</order></author><author><firstname>S. A.</firstname><surname>Jones</surname><order>25</order></author><author><firstname>S.</firstname><surname>Jonsell</surname><order>26</order></author><author><firstname>A.</firstname><surname>Khramov</surname><order>27</order></author><author><firstname>P.</firstname><surname>Knapp</surname><order>28</order></author><author><firstname>L.</firstname><surname>Kurchaninov</surname><order>29</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>30</order></author><author><firstname>Daniel</firstname><surname>Maxwell</surname><orcid>0000-0001-5178-9492</orcid><order>31</order></author><author><firstname>J. T. K.</firstname><surname>McKenna</surname><order>32</order></author><author><firstname>S.</firstname><surname>Menary</surname><order>33</order></author><author><firstname>J. M.</firstname><surname>Michan</surname><order>34</order></author><author><firstname>T.</firstname><surname>Momose</surname><order>35</order></author><author><firstname>J. J.</firstname><surname>Munich</surname><order>36</order></author><author><firstname>K.</firstname><surname>Olchanski</surname><order>37</order></author><author><firstname>A.</firstname><surname>Olin</surname><order>38</order></author><author><firstname>P.</firstname><surname>Pusa</surname><order>39</order></author><author><firstname>C. &#xD8;.</firstname><surname>Rasmussen</surname><order>40</order></author><author><firstname>F.</firstname><surname>Robicheaux</surname><order>41</order></author><author><firstname>R. L.</firstname><surname>Sacramento</surname><order>42</order></author><author><firstname>M.</firstname><surname>Sameed</surname><order>43</order></author><author><firstname>E.</firstname><surname>Sarid</surname><order>44</order></author><author><firstname>D. M.</firstname><surname>Silveira</surname><order>45</order></author><author><firstname>D. M.</firstname><surname>Starko</surname><order>46</order></author><author><firstname>G.</firstname><surname>Stutter</surname><order>47</order></author><author><firstname>C.</firstname><surname>So</surname><order>48</order></author><author><firstname>T. D.</firstname><surname>Tharp</surname><order>49</order></author><author><firstname>R. I.</firstname><surname>Thompson</surname><order>50</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>51</order></author><author><firstname>J. S.</firstname><surname>Wurtele</surname><order>52</order></author></authors><documents><document><filename>0043610-26092018110306.pdf</filename><originalFilename>43610.pdf</originalFilename><uploaded>2018-09-26T11:03:06.2070000</uploaded><type>Output</type><contentLength>1858634</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-09-26T00:00:00.0000000</embargoDate><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2022-11-09T15:39:26.7829492 v2 43610 2018-09-02 Observation of the 1S–2P Lyman-α transition in antihydrogen 0c72afb63bd0c6089fc5b60bd096103e 0000-0002-9448-8419 Christopher Baker Christopher Baker true false d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false 785cbd474febb1bfa9c0e14abaf9c4a8 0000-0002-5390-1879 Stefan Eriksson Stefan Eriksson true false 06d7ed42719ef7bb697cf780c63e26f0 0000-0002-7813-1903 Aled Isaac Aled Isaac true false a1fd0a804e977beb3835bad353db5f72 Jack Jones Jack Jones true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false e8ebdf12e608884a8d4ea4af35b89b46 0000-0001-5178-9492 Daniel Maxwell Daniel Maxwell true false 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false 2018-09-02 EAAS In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line—the 1S–2P transition at a wavelength of 121.6 nanometres—have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called ‘Lyman-α forest’3 of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S–2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10−8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S–2S transitions6,7 recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Journal Article Nature 561 7722 211 215 0028-0836 1476-4687 13 9 2018 2018-09-13 10.1038/s41586-018-0435-1 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University This work was supported by: the European Research Council through its Advanced Grant programme (to J.S.H.); CNPq, FAPERJ, RENAFAE (Brazil); NSERC, CFI, NRC/TRIUMF, EHPDS/EHDRS (Canada); FNU (Nice Centre), Carlsberg Foundation (Denmark); ISF (Israel); STFC, EPSRC, the Royal Society and the Leverhulme Trust (UK); DOE, NSF (USA); and VR (Sweden). 2022-11-09T15:39:26.7829492 2018-09-02T14:03:27.1258179 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics M. Ahmadi 1 B. X. R. Alves 2 Christopher Baker 0000-0002-9448-8419 3 W. Bertsche 4 A. Capra 5 C. Carruth 6 C. L. Cesar 7 Michael Charlton 8 S. Cohen 9 R. Collister 10 Stefan Eriksson 0000-0002-5390-1879 11 A. Evans 12 N. Evetts 13 J. Fajans 14 T. Friesen 15 M. C. Fujiwara 16 D. R. Gill 17 J. S. Hangst 18 W. N. Hardy 19 M. E. Hayden 20 E. D. Hunter 21 Aled Isaac 0000-0002-7813-1903 22 M. A. Johnson 23 Jack Jones 24 S. A. Jones 25 S. Jonsell 26 A. Khramov 27 P. Knapp 28 L. Kurchaninov 29 Niels Madsen 0000-0002-7372-0784 30 Daniel Maxwell 0000-0001-5178-9492 31 J. T. K. McKenna 32 S. Menary 33 J. M. Michan 34 T. Momose 35 J. J. Munich 36 K. Olchanski 37 A. Olin 38 P. Pusa 39 C. Ø. Rasmussen 40 F. Robicheaux 41 R. L. Sacramento 42 M. Sameed 43 E. Sarid 44 D. M. Silveira 45 D. M. Starko 46 G. Stutter 47 C. So 48 T. D. Tharp 49 R. I. Thompson 50 Dirk van der Werf 0000-0001-5436-5214 51 J. S. Wurtele 52 0043610-26092018110306.pdf 43610.pdf 2018-09-26T11:03:06.2070000 Output 1858634 application/pdf Version of Record true 2018-09-26T00:00:00.0000000 This article is licensed under a Creative Commons Attribution 4.0 International License. true eng
title Observation of the 1S–2P Lyman-α transition in antihydrogen
spellingShingle Observation of the 1S–2P Lyman-α transition in antihydrogen
Christopher Baker
Michael Charlton
Stefan Eriksson
Aled Isaac
Jack Jones
Niels Madsen
Daniel Maxwell
Dirk van der Werf
title_short Observation of the 1S–2P Lyman-α transition in antihydrogen
title_full Observation of the 1S–2P Lyman-α transition in antihydrogen
title_fullStr Observation of the 1S–2P Lyman-α transition in antihydrogen
title_full_unstemmed Observation of the 1S–2P Lyman-α transition in antihydrogen
title_sort Observation of the 1S–2P Lyman-α transition in antihydrogen
author_id_str_mv 0c72afb63bd0c6089fc5b60bd096103e
d9099cdd0f182eb9a1c8fc36ed94f53f
785cbd474febb1bfa9c0e14abaf9c4a8
06d7ed42719ef7bb697cf780c63e26f0
a1fd0a804e977beb3835bad353db5f72
e348e4d768ee19c1d0c68ce3a66d6303
e8ebdf12e608884a8d4ea4af35b89b46
4a4149ebce588e432f310f4ab44dd82a
author_id_fullname_str_mv 0c72afb63bd0c6089fc5b60bd096103e_***_Christopher Baker
d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton
785cbd474febb1bfa9c0e14abaf9c4a8_***_Stefan Eriksson
06d7ed42719ef7bb697cf780c63e26f0_***_Aled Isaac
a1fd0a804e977beb3835bad353db5f72_***_Jack Jones
e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen
e8ebdf12e608884a8d4ea4af35b89b46_***_Daniel Maxwell
4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf
author Christopher Baker
Michael Charlton
Stefan Eriksson
Aled Isaac
Jack Jones
Niels Madsen
Daniel Maxwell
Dirk van der Werf
author2 M. Ahmadi
B. X. R. Alves
Christopher Baker
W. Bertsche
A. Capra
C. Carruth
C. L. Cesar
Michael Charlton
S. Cohen
R. Collister
Stefan Eriksson
A. Evans
N. Evetts
J. Fajans
T. Friesen
M. C. Fujiwara
D. R. Gill
J. S. Hangst
W. N. Hardy
M. E. Hayden
E. D. Hunter
Aled Isaac
M. A. Johnson
Jack Jones
S. A. Jones
S. Jonsell
A. Khramov
P. Knapp
L. Kurchaninov
Niels Madsen
Daniel Maxwell
J. T. K. McKenna
S. Menary
J. M. Michan
T. Momose
J. J. Munich
K. Olchanski
A. Olin
P. Pusa
C. Ø. Rasmussen
F. Robicheaux
R. L. Sacramento
M. Sameed
E. Sarid
D. M. Silveira
D. M. Starko
G. Stutter
C. So
T. D. Tharp
R. I. Thompson
Dirk van der Werf
J. S. Wurtele
format Journal article
container_title Nature
container_volume 561
container_issue 7722
container_start_page 211
publishDate 2018
institution Swansea University
issn 0028-0836
1476-4687
doi_str_mv 10.1038/s41586-018-0435-1
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line—the 1S–2P transition at a wavelength of 121.6 nanometres—have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called ‘Lyman-α forest’3 of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S–2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10−8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S–2S transitions6,7 recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.
published_date 2018-09-13T07:33:29Z
_version_ 1821389943641997312
score 11.364387