No Cover Image

E-Thesis 277 views 90 downloads

Scalable video streaming in wireless mesh networks. / Yan Liu

Swansea University Author: Yan Liu

Abstract

Wireless mesh network provides efficient and reliable services for large scale communications. Video streaming in wireless networks enhances the services by delivering multimedia information to end users. However, because of the dynamic conditions of networks and variety of users, how to smoothly de...

Full description

Published: 2009
Institution: Swansea University
Degree level: Master of Philosophy
Degree name: M.Phil
URI: https://cronfa.swan.ac.uk/Record/cronfa42739
first_indexed 2018-08-02T18:55:25Z
last_indexed 2019-10-21T16:48:22Z
id cronfa42739
recordtype RisThesis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-08-16T14:39:02.9105634</datestamp><bib-version>v2</bib-version><id>42739</id><entry>2018-08-02</entry><title>Scalable video streaming in wireless mesh networks.</title><swanseaauthors><author><sid>929f37bbfdbe6b57e406aaf8ec4ad2fb</sid><ORCID>NULL</ORCID><firstname>Yan</firstname><surname>Liu</surname><name>Yan Liu</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-08-02</date><abstract>Wireless mesh network provides efficient and reliable services for large scale communications. Video streaming in wireless networks enhances the services by delivering multimedia information to end users. However, because of the dynamic conditions of networks and variety of users, how to smoothly deliver the multimedia data to users without wasting precious network resources is still a challenge. This thesis addressed this challenge by investigating several key issues in video streaming in wireless mesh networks. Firstly, a video streaming system, Swan Video Streaming system (SVS), over wireless mesh networks was designed and developed. Secondly, a scalable video coding scheme was adopted in SVS. Video bit streams were split into two layers, base layer and enhancement layer. These two layers of video streams were packed into two multicast groups to allow users to get access them separately based on their processing ability and network conditions. This prevents the waste of network bandwidth by eliminating the delivery of videos to all the users regardless of their conditions. Thirdly, to improve the video robustness and reduce the overhead of the network for real-time video streaming, the important parameter messages of scale coded videos are transmitted in a reliable manner. SDP (Session Description Protocol) and RTCP (Real-time Transport Control Protocol) were improved to transmit the control messages at the beginning of video transmission and during video transmission stages, respectively. A new rearrangement method in RTCP of received packets was also proposed to improve the efficiency of algorithm and reduce network overhead. In addition, based on the feedback from video server and receivers, server and receivers can adjust their output bit rate and receiving rate according to different conditions of network to reduce the congestion. The above approaches have been evaluated in the developed SVS testbed. Tests results show the approaches are effective and feasible in real application scenarios.</abstract><type>E-Thesis</type><journal/><journalNumber></journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><issnPrint/><issnElectronic/><keywords>Computer science.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2009</publishedYear><publishedDate>2009-12-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Master of Philosophy</degreelevel><degreename>M.Phil</degreename><apcterm/><lastEdited>2018-08-16T14:39:02.9105634</lastEdited><Created>2018-08-02T16:24:30.2894046</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Yan</firstname><surname>Liu</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0042739-02082018162518.pdf</filename><originalFilename>10807508.pdf</originalFilename><uploaded>2018-08-02T16:25:18.1670000</uploaded><type>Output</type><contentLength>7619984</contentLength><contentType>application/pdf</contentType><version>E-Thesis</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-08-02T16:25:18.1670000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2018-08-16T14:39:02.9105634 v2 42739 2018-08-02 Scalable video streaming in wireless mesh networks. 929f37bbfdbe6b57e406aaf8ec4ad2fb NULL Yan Liu Yan Liu true true 2018-08-02 Wireless mesh network provides efficient and reliable services for large scale communications. Video streaming in wireless networks enhances the services by delivering multimedia information to end users. However, because of the dynamic conditions of networks and variety of users, how to smoothly deliver the multimedia data to users without wasting precious network resources is still a challenge. This thesis addressed this challenge by investigating several key issues in video streaming in wireless mesh networks. Firstly, a video streaming system, Swan Video Streaming system (SVS), over wireless mesh networks was designed and developed. Secondly, a scalable video coding scheme was adopted in SVS. Video bit streams were split into two layers, base layer and enhancement layer. These two layers of video streams were packed into two multicast groups to allow users to get access them separately based on their processing ability and network conditions. This prevents the waste of network bandwidth by eliminating the delivery of videos to all the users regardless of their conditions. Thirdly, to improve the video robustness and reduce the overhead of the network for real-time video streaming, the important parameter messages of scale coded videos are transmitted in a reliable manner. SDP (Session Description Protocol) and RTCP (Real-time Transport Control Protocol) were improved to transmit the control messages at the beginning of video transmission and during video transmission stages, respectively. A new rearrangement method in RTCP of received packets was also proposed to improve the efficiency of algorithm and reduce network overhead. In addition, based on the feedback from video server and receivers, server and receivers can adjust their output bit rate and receiving rate according to different conditions of network to reduce the congestion. The above approaches have been evaluated in the developed SVS testbed. Tests results show the approaches are effective and feasible in real application scenarios. E-Thesis Computer science. 31 12 2009 2009-12-31 COLLEGE NANME Engineering COLLEGE CODE Swansea University Master of Philosophy M.Phil 2018-08-16T14:39:02.9105634 2018-08-02T16:24:30.2894046 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Yan Liu NULL 1 0042739-02082018162518.pdf 10807508.pdf 2018-08-02T16:25:18.1670000 Output 7619984 application/pdf E-Thesis true 2018-08-02T16:25:18.1670000 false
title Scalable video streaming in wireless mesh networks.
spellingShingle Scalable video streaming in wireless mesh networks.
Yan Liu
title_short Scalable video streaming in wireless mesh networks.
title_full Scalable video streaming in wireless mesh networks.
title_fullStr Scalable video streaming in wireless mesh networks.
title_full_unstemmed Scalable video streaming in wireless mesh networks.
title_sort Scalable video streaming in wireless mesh networks.
author_id_str_mv 929f37bbfdbe6b57e406aaf8ec4ad2fb
author_id_fullname_str_mv 929f37bbfdbe6b57e406aaf8ec4ad2fb_***_Yan Liu
author Yan Liu
author2 Yan Liu
format E-Thesis
publishDate 2009
institution Swansea University
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Wireless mesh network provides efficient and reliable services for large scale communications. Video streaming in wireless networks enhances the services by delivering multimedia information to end users. However, because of the dynamic conditions of networks and variety of users, how to smoothly deliver the multimedia data to users without wasting precious network resources is still a challenge. This thesis addressed this challenge by investigating several key issues in video streaming in wireless mesh networks. Firstly, a video streaming system, Swan Video Streaming system (SVS), over wireless mesh networks was designed and developed. Secondly, a scalable video coding scheme was adopted in SVS. Video bit streams were split into two layers, base layer and enhancement layer. These two layers of video streams were packed into two multicast groups to allow users to get access them separately based on their processing ability and network conditions. This prevents the waste of network bandwidth by eliminating the delivery of videos to all the users regardless of their conditions. Thirdly, to improve the video robustness and reduce the overhead of the network for real-time video streaming, the important parameter messages of scale coded videos are transmitted in a reliable manner. SDP (Session Description Protocol) and RTCP (Real-time Transport Control Protocol) were improved to transmit the control messages at the beginning of video transmission and during video transmission stages, respectively. A new rearrangement method in RTCP of received packets was also proposed to improve the efficiency of algorithm and reduce network overhead. In addition, based on the feedback from video server and receivers, server and receivers can adjust their output bit rate and receiving rate according to different conditions of network to reduce the congestion. The above approaches have been evaluated in the developed SVS testbed. Tests results show the approaches are effective and feasible in real application scenarios.
published_date 2009-12-31T07:31:14Z
_version_ 1821389802702897152
score 11.04748