E-Thesis 516 views 80 downloads
Reliable durability assessment of welded yellow goods equipment. / Dean Flynn
Swansea University Author: Dean Flynn
-
PDF | E-Thesis
Download (60.87MB)
Abstract
Weld fatigue performance is a main design consideration with Yellow Goods vehicles and can determine the overall product durability. Accurate fatigue life prediction is critical but current durability assessment involves extensive testing. This design process lacks efficiency and presents scope for...
Published: |
2010
|
---|---|
Institution: | Swansea University |
Degree level: | Doctoral |
Degree name: | EngD |
URI: | https://cronfa.swan.ac.uk/Record/cronfa42562 |
first_indexed |
2018-08-02T18:55:00Z |
---|---|
last_indexed |
2018-08-03T10:10:28Z |
id |
cronfa42562 |
recordtype |
RisThesis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-08-02T16:24:29.6809968</datestamp><bib-version>v2</bib-version><id>42562</id><entry>2018-08-02</entry><title>Reliable durability assessment of welded yellow goods equipment.</title><swanseaauthors><author><sid>e40d8b1a864bb4f51c8337c10169cd16</sid><ORCID>NULL</ORCID><firstname>Dean</firstname><surname>Flynn</surname><name>Dean Flynn</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-08-02</date><abstract>Weld fatigue performance is a main design consideration with Yellow Goods vehicles and can determine the overall product durability. Accurate fatigue life prediction is critical but current durability assessment involves extensive testing. This design process lacks efficiency and presents scope for a finite element (FE) based weld fatigue assessment method. Used early in the design stage, this method will improve time-to-market of products and achieve robust 'right-first-time' designs. Research work has been carried out into applying the 'Master S-N Curve' approach to thick-plate construction and agricultural equipment. Weld fatigue data was generated on a range of simple welded coupons and converted for the fatigue life prediction of welded structures using the structural stress damage parameter. Overall, a single Master S-N curve was achievable for a range of different weld joint configurations. The method achieved good condensation of the geometry dependent load-life fatigue curves into a single structural stress against life curve. The structural stress method was further extended to fatigue lives of weld throat failures with good condensation of the data. Excellent correlations were achieved between solid and shell element models. The concept proved to be effective and largely insensitive to FE mesh type and size. However, limitations were found with shell element models when predicting weld throat failures. The structural stress measurement technique was employed and a master curve generated, derived from coupon strain-gauge recordings. The Master S-N curve approach was applied in the fatigue assessment of a laboratory test component and production component for the construction industry with limited success. Predictions were compared with recorded values from component fatigue tests. More accurate predictions and improved correlations were found when using separate failure mode master curves. Overall the work showed some potential for the use of the Master S-N Curve approach in the early design stage of construction and agricultural welded structures.</abstract><type>E-Thesis</type><journal/><journalNumber></journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><issnPrint/><issnElectronic/><keywords>Mechanical engineering.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2010</publishedYear><publishedDate>2010-12-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>EngD</degreename><apcterm/><lastEdited>2018-08-02T16:24:29.6809968</lastEdited><Created>2018-08-02T16:24:29.6809968</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Dean</firstname><surname>Flynn</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0042562-02082018162504.pdf</filename><originalFilename>10805311.pdf</originalFilename><uploaded>2018-08-02T16:25:04.2670000</uploaded><type>Output</type><contentLength>63673969</contentLength><contentType>application/pdf</contentType><version>E-Thesis</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-08-02T16:25:04.2670000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-08-02T16:24:29.6809968 v2 42562 2018-08-02 Reliable durability assessment of welded yellow goods equipment. e40d8b1a864bb4f51c8337c10169cd16 NULL Dean Flynn Dean Flynn true true 2018-08-02 Weld fatigue performance is a main design consideration with Yellow Goods vehicles and can determine the overall product durability. Accurate fatigue life prediction is critical but current durability assessment involves extensive testing. This design process lacks efficiency and presents scope for a finite element (FE) based weld fatigue assessment method. Used early in the design stage, this method will improve time-to-market of products and achieve robust 'right-first-time' designs. Research work has been carried out into applying the 'Master S-N Curve' approach to thick-plate construction and agricultural equipment. Weld fatigue data was generated on a range of simple welded coupons and converted for the fatigue life prediction of welded structures using the structural stress damage parameter. Overall, a single Master S-N curve was achievable for a range of different weld joint configurations. The method achieved good condensation of the geometry dependent load-life fatigue curves into a single structural stress against life curve. The structural stress method was further extended to fatigue lives of weld throat failures with good condensation of the data. Excellent correlations were achieved between solid and shell element models. The concept proved to be effective and largely insensitive to FE mesh type and size. However, limitations were found with shell element models when predicting weld throat failures. The structural stress measurement technique was employed and a master curve generated, derived from coupon strain-gauge recordings. The Master S-N curve approach was applied in the fatigue assessment of a laboratory test component and production component for the construction industry with limited success. Predictions were compared with recorded values from component fatigue tests. More accurate predictions and improved correlations were found when using separate failure mode master curves. Overall the work showed some potential for the use of the Master S-N Curve approach in the early design stage of construction and agricultural welded structures. E-Thesis Mechanical engineering. 31 12 2010 2010-12-31 COLLEGE NANME Engineering COLLEGE CODE Swansea University Doctoral EngD 2018-08-02T16:24:29.6809968 2018-08-02T16:24:29.6809968 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Dean Flynn NULL 1 0042562-02082018162504.pdf 10805311.pdf 2018-08-02T16:25:04.2670000 Output 63673969 application/pdf E-Thesis true 2018-08-02T16:25:04.2670000 false |
title |
Reliable durability assessment of welded yellow goods equipment. |
spellingShingle |
Reliable durability assessment of welded yellow goods equipment. Dean Flynn |
title_short |
Reliable durability assessment of welded yellow goods equipment. |
title_full |
Reliable durability assessment of welded yellow goods equipment. |
title_fullStr |
Reliable durability assessment of welded yellow goods equipment. |
title_full_unstemmed |
Reliable durability assessment of welded yellow goods equipment. |
title_sort |
Reliable durability assessment of welded yellow goods equipment. |
author_id_str_mv |
e40d8b1a864bb4f51c8337c10169cd16 |
author_id_fullname_str_mv |
e40d8b1a864bb4f51c8337c10169cd16_***_Dean Flynn |
author |
Dean Flynn |
author2 |
Dean Flynn |
format |
E-Thesis |
publishDate |
2010 |
institution |
Swansea University |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
Weld fatigue performance is a main design consideration with Yellow Goods vehicles and can determine the overall product durability. Accurate fatigue life prediction is critical but current durability assessment involves extensive testing. This design process lacks efficiency and presents scope for a finite element (FE) based weld fatigue assessment method. Used early in the design stage, this method will improve time-to-market of products and achieve robust 'right-first-time' designs. Research work has been carried out into applying the 'Master S-N Curve' approach to thick-plate construction and agricultural equipment. Weld fatigue data was generated on a range of simple welded coupons and converted for the fatigue life prediction of welded structures using the structural stress damage parameter. Overall, a single Master S-N curve was achievable for a range of different weld joint configurations. The method achieved good condensation of the geometry dependent load-life fatigue curves into a single structural stress against life curve. The structural stress method was further extended to fatigue lives of weld throat failures with good condensation of the data. Excellent correlations were achieved between solid and shell element models. The concept proved to be effective and largely insensitive to FE mesh type and size. However, limitations were found with shell element models when predicting weld throat failures. The structural stress measurement technique was employed and a master curve generated, derived from coupon strain-gauge recordings. The Master S-N curve approach was applied in the fatigue assessment of a laboratory test component and production component for the construction industry with limited success. Predictions were compared with recorded values from component fatigue tests. More accurate predictions and improved correlations were found when using separate failure mode master curves. Overall the work showed some potential for the use of the Master S-N Curve approach in the early design stage of construction and agricultural welded structures. |
published_date |
2010-12-31T19:28:40Z |
_version_ |
1821344341865529344 |
score |
11.04748 |