No Cover Image

E-Thesis 314 views 127 downloads

Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications. / Wenyang Guan

Swansea University Author: Wenyang Guan

Abstract

Road traffic safety has been a subject of worldwide concern. Dedicated short range communications (DSRC) is widely regarded as a promising enabling technology for collaborative safety applications (CSA), which can provide robust communication and affordable performance to build large scale CSA syste...

Full description

Published: 2013
Institution: Swansea University
Degree level: Doctoral
Degree name: Ph.D
URI: https://cronfa.swan.ac.uk/Record/cronfa42507
first_indexed 2018-08-02T18:54:52Z
last_indexed 2018-08-03T10:10:20Z
id cronfa42507
recordtype RisThesis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-08-02T16:24:29.4937951</datestamp><bib-version>v2</bib-version><id>42507</id><entry>2018-08-02</entry><title>Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.</title><swanseaauthors><author><sid>cd5762da68d78376e71a7d206e6a5c26</sid><ORCID>NULL</ORCID><firstname>Wenyang</firstname><surname>Guan</surname><name>Wenyang Guan</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-08-02</date><abstract>Road traffic safety has been a subject of worldwide concern. Dedicated short range communications (DSRC) is widely regarded as a promising enabling technology for collaborative safety applications (CSA), which can provide robust communication and affordable performance to build large scale CSA system. The main focus of this thesis is to develop solutions for DSRC QoS control in order to provide robust QoS support for CSA. The first design objective is to ensure robust and reliable message delivery services for safety applications from the DSRC networks. As the spectrum resources allocated to DSRC network are expected to be shared by both safety and non-safety applications, the second design objective is to make QoS control schemes bandwidth-efficient in order to leave as much as possible bandwidth for non-safety applications. The first part of the thesis investigates QoS control in infrastructure based DSRC networks, where roadside access points (AP) are available to control QoS control at road intersections. After analyse DSRC network capabilities on QoS provisioning without congestion control, we propose a two-phases adaptive QoS control method for DSRC vehicle networks. In the first phase an offline simulation based approach is used to and out the best possible system configurations (e.g. message rate and transmit power) with given numbers of vehicles and QoS requirements. It is noted that with different utility functions the values of optimal parameters proposed by the two phases centralized QoS control scheme will be different. The conclusions obtained with the proposed scheme are dependent on the chosen utility functions. But the proposed two phases centralized QoS control scheme is general and is applicable to different utility functions. In the second phase, these configurations are used online by roadside AP adaptively according to dynamic traffic loads. The second part of the thesis is focused on distributed QoS control for DSRC networks. A framework of collaborative QoS control is proposed, following which we utilize the local channel busy time as the indicator of network congestion and adaptively adjust safety message rate by a modified additive increase and multiplicative decrease (AIMD) method in a distributed way. Numerical results demonstrate the effectiveness of the proposed QoS control schemes.</abstract><type>E-Thesis</type><journal/><journalNumber></journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><issnPrint/><issnElectronic/><keywords>Systems science.;Automotive engineering.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2013</publishedYear><publishedDate>2013-12-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><apcterm/><lastEdited>2018-08-02T16:24:29.4937951</lastEdited><Created>2018-08-02T16:24:29.4937951</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Wenyang</firstname><surname>Guan</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0042507-02082018162459.pdf</filename><originalFilename>10801737.pdf</originalFilename><uploaded>2018-08-02T16:24:59.9470000</uploaded><type>Output</type><contentLength>36363891</contentLength><contentType>application/pdf</contentType><version>E-Thesis</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-08-02T16:24:59.9470000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2018-08-02T16:24:29.4937951 v2 42507 2018-08-02 Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications. cd5762da68d78376e71a7d206e6a5c26 NULL Wenyang Guan Wenyang Guan true true 2018-08-02 Road traffic safety has been a subject of worldwide concern. Dedicated short range communications (DSRC) is widely regarded as a promising enabling technology for collaborative safety applications (CSA), which can provide robust communication and affordable performance to build large scale CSA system. The main focus of this thesis is to develop solutions for DSRC QoS control in order to provide robust QoS support for CSA. The first design objective is to ensure robust and reliable message delivery services for safety applications from the DSRC networks. As the spectrum resources allocated to DSRC network are expected to be shared by both safety and non-safety applications, the second design objective is to make QoS control schemes bandwidth-efficient in order to leave as much as possible bandwidth for non-safety applications. The first part of the thesis investigates QoS control in infrastructure based DSRC networks, where roadside access points (AP) are available to control QoS control at road intersections. After analyse DSRC network capabilities on QoS provisioning without congestion control, we propose a two-phases adaptive QoS control method for DSRC vehicle networks. In the first phase an offline simulation based approach is used to and out the best possible system configurations (e.g. message rate and transmit power) with given numbers of vehicles and QoS requirements. It is noted that with different utility functions the values of optimal parameters proposed by the two phases centralized QoS control scheme will be different. The conclusions obtained with the proposed scheme are dependent on the chosen utility functions. But the proposed two phases centralized QoS control scheme is general and is applicable to different utility functions. In the second phase, these configurations are used online by roadside AP adaptively according to dynamic traffic loads. The second part of the thesis is focused on distributed QoS control for DSRC networks. A framework of collaborative QoS control is proposed, following which we utilize the local channel busy time as the indicator of network congestion and adaptively adjust safety message rate by a modified additive increase and multiplicative decrease (AIMD) method in a distributed way. Numerical results demonstrate the effectiveness of the proposed QoS control schemes. E-Thesis Systems science.;Automotive engineering. 31 12 2013 2013-12-31 COLLEGE NANME Engineering COLLEGE CODE Swansea University Doctoral Ph.D 2018-08-02T16:24:29.4937951 2018-08-02T16:24:29.4937951 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Wenyang Guan NULL 1 0042507-02082018162459.pdf 10801737.pdf 2018-08-02T16:24:59.9470000 Output 36363891 application/pdf E-Thesis true 2018-08-02T16:24:59.9470000 false
title Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.
spellingShingle Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.
Wenyang Guan
title_short Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.
title_full Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.
title_fullStr Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.
title_full_unstemmed Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.
title_sort Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications.
author_id_str_mv cd5762da68d78376e71a7d206e6a5c26
author_id_fullname_str_mv cd5762da68d78376e71a7d206e6a5c26_***_Wenyang Guan
author Wenyang Guan
author2 Wenyang Guan
format E-Thesis
publishDate 2013
institution Swansea University
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Road traffic safety has been a subject of worldwide concern. Dedicated short range communications (DSRC) is widely regarded as a promising enabling technology for collaborative safety applications (CSA), which can provide robust communication and affordable performance to build large scale CSA system. The main focus of this thesis is to develop solutions for DSRC QoS control in order to provide robust QoS support for CSA. The first design objective is to ensure robust and reliable message delivery services for safety applications from the DSRC networks. As the spectrum resources allocated to DSRC network are expected to be shared by both safety and non-safety applications, the second design objective is to make QoS control schemes bandwidth-efficient in order to leave as much as possible bandwidth for non-safety applications. The first part of the thesis investigates QoS control in infrastructure based DSRC networks, where roadside access points (AP) are available to control QoS control at road intersections. After analyse DSRC network capabilities on QoS provisioning without congestion control, we propose a two-phases adaptive QoS control method for DSRC vehicle networks. In the first phase an offline simulation based approach is used to and out the best possible system configurations (e.g. message rate and transmit power) with given numbers of vehicles and QoS requirements. It is noted that with different utility functions the values of optimal parameters proposed by the two phases centralized QoS control scheme will be different. The conclusions obtained with the proposed scheme are dependent on the chosen utility functions. But the proposed two phases centralized QoS control scheme is general and is applicable to different utility functions. In the second phase, these configurations are used online by roadside AP adaptively according to dynamic traffic loads. The second part of the thesis is focused on distributed QoS control for DSRC networks. A framework of collaborative QoS control is proposed, following which we utilize the local channel busy time as the indicator of network congestion and adaptively adjust safety message rate by a modified additive increase and multiplicative decrease (AIMD) method in a distributed way. Numerical results demonstrate the effectiveness of the proposed QoS control schemes.
published_date 2013-12-31T07:30:29Z
_version_ 1821389754506149888
score 11.047501