Journal article 991 views 148 downloads
On twisted reality conditions
Letters in Mathematical Physics, Volume: 109, Pages: 643 - 659
Swansea University Author: Tomasz Brzezinski
-
PDF | Accepted Manuscript
Download (266.15KB)
DOI (Published version): 10.1007/s11005-018-1120-x
Abstract
We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phy...
Published in: | Letters in Mathematical Physics |
---|---|
ISSN: | 0377-9017 1573-0530 |
Published: |
Springer
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa41070 |
first_indexed |
2018-07-19T13:39:03Z |
---|---|
last_indexed |
2019-10-11T20:05:56Z |
id |
cronfa41070 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-10-11T15:20:28.6267398</datestamp><bib-version>v2</bib-version><id>41070</id><entry>2018-07-19</entry><title>On twisted reality conditions</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-07-19</date><deptcode>MACS</deptcode><abstract>We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phys. 106 (2016), 1499–1530. We also relate this construction toconformally rescaled real twisted spectral triples, and discuss the untwisting of the ‘minimaltwist’ procedure of an even spectral triple.</abstract><type>Journal Article</type><journal>Letters in Mathematical Physics</journal><volume>109</volume><paginationStart>643</paginationStart><paginationEnd>659</paginationEnd><publisher>Springer</publisher><issnPrint>0377-9017</issnPrint><issnElectronic>1573-0530</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1007/s11005-018-1120-x</doi><url/><notes>This is a post-peer-review, pre-copyedit version of an article published in Letters in Mathematical Physics. The final authenticated version is available online at: https://doi.org/10.1007/s11005-018-1120-x</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-10-11T15:20:28.6267398</lastEdited><Created>2018-07-19T12:46:42.3117857</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzeziński</surname><order>1</order></author><author><firstname>Ludwik</firstname><surname>Dąbrowski</surname><order>2</order></author><author><firstname>Andrzej</firstname><surname>Sitarz</surname><order>3</order></author><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>4</order></author></authors><documents><document><filename>0041070-19072018125236.pdf</filename><originalFilename>reality-LMP-rev-1.pdf</originalFilename><uploaded>2018-07-19T12:52:36.0300000</uploaded><type>Output</type><contentLength>223213</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-08-04T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-10-11T15:20:28.6267398 v2 41070 2018-07-19 On twisted reality conditions 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2018-07-19 MACS We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phys. 106 (2016), 1499–1530. We also relate this construction toconformally rescaled real twisted spectral triples, and discuss the untwisting of the ‘minimaltwist’ procedure of an even spectral triple. Journal Article Letters in Mathematical Physics 109 643 659 Springer 0377-9017 1573-0530 31 12 2019 2019-12-31 10.1007/s11005-018-1120-x This is a post-peer-review, pre-copyedit version of an article published in Letters in Mathematical Physics. The final authenticated version is available online at: https://doi.org/10.1007/s11005-018-1120-x COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2019-10-11T15:20:28.6267398 2018-07-19T12:46:42.3117857 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzeziński 1 Ludwik Dąbrowski 2 Andrzej Sitarz 3 Tomasz Brzezinski 0000-0001-6270-3439 4 0041070-19072018125236.pdf reality-LMP-rev-1.pdf 2018-07-19T12:52:36.0300000 Output 223213 application/pdf Accepted Manuscript true 2019-08-04T00:00:00.0000000 true eng |
title |
On twisted reality conditions |
spellingShingle |
On twisted reality conditions Tomasz Brzezinski |
title_short |
On twisted reality conditions |
title_full |
On twisted reality conditions |
title_fullStr |
On twisted reality conditions |
title_full_unstemmed |
On twisted reality conditions |
title_sort |
On twisted reality conditions |
author_id_str_mv |
30466d840b59627325596fbbb2c82754 |
author_id_fullname_str_mv |
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski |
author |
Tomasz Brzezinski |
author2 |
Tomasz Brzeziński Ludwik Dąbrowski Andrzej Sitarz Tomasz Brzezinski |
format |
Journal article |
container_title |
Letters in Mathematical Physics |
container_volume |
109 |
container_start_page |
643 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0377-9017 1573-0530 |
doi_str_mv |
10.1007/s11005-018-1120-x |
publisher |
Springer |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phys. 106 (2016), 1499–1530. We also relate this construction toconformally rescaled real twisted spectral triples, and discuss the untwisting of the ‘minimaltwist’ procedure of an even spectral triple. |
published_date |
2019-12-31T04:43:01Z |
_version_ |
1821469816039407616 |
score |
11.0583515 |