No Cover Image

E-Thesis 1019 views 693 downloads

An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys / Thomas Lewis; Thomas A. Lewis

Swansea University Authors: Thomas Lewis, Thomas A. Lewis

DOI (Published version): 10.23889/SUthesis.40713

Abstract

The general premise of this work was to better understand the corrosion behaviour of newer-generation zinc-magnesium-aluminium galvanising alloys. In addition to this, the impact of both novel and established corrosion inhibitor additions dosed into solution were studied to assess the effects to pro...

Full description

Published: 2018
Institution: Swansea University
Degree level: Doctoral
Degree name: EngD
URI: https://cronfa.swan.ac.uk/Record/cronfa40713
first_indexed 2018-06-15T13:35:16Z
last_indexed 2020-08-29T03:03:25Z
id cronfa40713
recordtype RisThesis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-08-28T16:31:01.5134148</datestamp><bib-version>v2</bib-version><id>40713</id><entry>2018-06-15</entry><title>An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys</title><swanseaauthors><author><sid>21ad686d6dc972e226cda9146bd2861d</sid><ORCID>0000-0002-0117-0066</ORCID><firstname>Thomas</firstname><surname>Lewis</surname><name>Thomas Lewis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b376956d95dc5da407230dbfb95b8891</sid><ORCID>0000-0002-0117-0066</ORCID><firstname>Thomas A.</firstname><surname>Lewis</surname><name>Thomas A. Lewis</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-06-15</date><deptcode>EAAS</deptcode><abstract>The general premise of this work was to better understand the corrosion behaviour of newer-generation zinc-magnesium-aluminium galvanising alloys. In addition to this, the impact of both novel and established corrosion inhibitor additions dosed into solution were studied to assess the effects to prospective alloy lifetimes and the underlying mechanisms of inhibitor action. This was through means of microstructural characterisation and analysis, and accelerated corrosion testing under immersion conditions; this included the use of the SVET, time-lapse optical microscopy, open-circuit potential, potentiodynamic polarisation, and gravimetric analysis. Accordingly, the microstructural attributes of three commercial grade zinc-magnesium-aluminium alloys were studied according to the differing quantities of magnesium and aluminium included in each alloy. The primary zinc-rich dendritic phases were observed to diminish in both volume fraction percentage and in size for increasing alloying addition. This was accompanied by a corresponding increase in eutectic phase volume fraction, which consisted of a binary and ternary lamellar eutectic, as confirmed by SEM-EDS. Alongside the microstructural changes, corrosion performance was noted to improve as alloying additions were increased. This was realised by SVET-measured metal loss values, of which SVET revealed fewer anodic sites and a lessened extent of anodic evolution. Time-lapse microscopy data demonstrated that corrosion was initiated in eutectic phases, attacking the MgZn2 phase in the first instance. The improved corrosion resistance for higher alloyed samples was associated with the preferential attack of magnesium-rich phases, forming beneficial corrosion products which enabled a reduction in corrosion reaction kinetics. The remaining work utilised a selected alloy of Zn-2wt.% Mg-2wt.% Al composition for experimental studies. The effect of solution pH was next considered to understand the impact to corrosion behaviour in such environments. For neutral and alkaline conditions, a characteristic localised attack was noted, with improvements in corrosion performance corresponding to higher pH conditions. Acidic conditions instead led to a generalised corrosion mechanism, illustrating a more widespread and more pronounced corrosive attack on the alloy surface. The increased corrosion resistance associated with higher pH conditions was attributed to an enhanced presence and stability of beneficial corrosion products. Further work was performed to assess the effectiveness and mechanisms of action for both established and more novel corrosion inhibitor additions on the selected zinc-magnesium-aluminium alloy. This was performed by dosing designated concentrations of the inhibitor species into solution. The addition of sodium phosphate was recognised to progressively reduce the formation and evolution of anodic sites, providing enhanced levels of corrosion resistance accordingly. The growth of anodic sites was observably restricted through the local formation of insoluble metal phosphate precipitates, predicted to be tertiary phosphate species according to solubility calculations. An anodic inhibition effect was suggested via reaction of phosphate anions with that of metal cations in solution, to produce insoluble metal phosphate species at regions of anodic activity. An amino acid, L-tryptophan, was studied as a prospective corrosion inhibitor for the designated zinc-magnesium-aluminium alloy coated steel. The addition of this compound at higher concentrations revealed a beneficial impact to the corrosion performance, whereby metal loss values were reduced and localised anodic activity was curtailed. This was realised to transpire via the formation of a film on the sample surface, precipitating predominantly in cathodic regions and eventually extending to moderate coverage of anodic regions, according to time-lapse microscopy. The data suggested that this inhibitor species acted primarily as a cathodic inhibitor, restricting mass transport of oxygen at the sample surface. The mechanism of action was not definitively demonstrated, and several mechanisms were discussed. A rare earth metal compound in the form of cerium(III) chloride was also studied as a corrosion inhibitor for the zinc-magnesium-aluminium alloy in question. An inverse relationship between extent of corrosion and concentration of inhibitor addition was realised, whereby higher concentrations enabled favourable corrosion resistance levels. The development of anodic activity was hindered by the deposition of films at the sample surface, and these were noted to form only in regions of cathodic activity. It was proposed that these films were of a cerium oxide/hydroxide composition, and limit adsorption of oxygen at the sample surface, regulating corrosion kinetics and thus the rate of anodic growth. Accordingly, the overall data suggested that this compound acted through means of cathodic inhibition. The combination of techniques has enabled valuable insights to be gained into the corrosion behaviour of commercial zinc-magnesium-aluminium alloys in different environments; this has also aided in the understanding of the underlying mechanisms of action for a range of prospective corrosion inhibitors within the zinc-magnesium-aluminium system.</abstract><type>E-Thesis</type><journal/><publisher/><keywords>corrosion, galvanising, corrosion inhibitors, scanning electrochemistry, timelapse optical microscopy</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.23889/SUthesis.40713</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>EngD</degreename><apcterm/><lastEdited>2020-08-28T16:31:01.5134148</lastEdited><Created>2018-06-15T10:42:15.3072767</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Thomas</firstname><surname>Lewis</surname><orcid>0000-0002-0117-0066</orcid><order>1</order></author><author><firstname>Thomas A.</firstname><surname>Lewis</surname><orcid>0000-0002-0117-0066</orcid><order>2</order></author></authors><documents><document><filename>0040713-15062018104255.pdf</filename><originalFilename>Lewis_Thomas_A_EngD_Thesis_Final.pdf</originalFilename><uploaded>2018-06-15T10:42:55.2430000</uploaded><type>Output</type><contentLength>12891957</contentLength><contentType>application/pdf</contentType><version>E-Thesis &#x2013; open access</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-06-15T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2020-08-28T16:31:01.5134148 v2 40713 2018-06-15 An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys 21ad686d6dc972e226cda9146bd2861d 0000-0002-0117-0066 Thomas Lewis Thomas Lewis true false b376956d95dc5da407230dbfb95b8891 0000-0002-0117-0066 Thomas A. Lewis Thomas A. Lewis true true 2018-06-15 EAAS The general premise of this work was to better understand the corrosion behaviour of newer-generation zinc-magnesium-aluminium galvanising alloys. In addition to this, the impact of both novel and established corrosion inhibitor additions dosed into solution were studied to assess the effects to prospective alloy lifetimes and the underlying mechanisms of inhibitor action. This was through means of microstructural characterisation and analysis, and accelerated corrosion testing under immersion conditions; this included the use of the SVET, time-lapse optical microscopy, open-circuit potential, potentiodynamic polarisation, and gravimetric analysis. Accordingly, the microstructural attributes of three commercial grade zinc-magnesium-aluminium alloys were studied according to the differing quantities of magnesium and aluminium included in each alloy. The primary zinc-rich dendritic phases were observed to diminish in both volume fraction percentage and in size for increasing alloying addition. This was accompanied by a corresponding increase in eutectic phase volume fraction, which consisted of a binary and ternary lamellar eutectic, as confirmed by SEM-EDS. Alongside the microstructural changes, corrosion performance was noted to improve as alloying additions were increased. This was realised by SVET-measured metal loss values, of which SVET revealed fewer anodic sites and a lessened extent of anodic evolution. Time-lapse microscopy data demonstrated that corrosion was initiated in eutectic phases, attacking the MgZn2 phase in the first instance. The improved corrosion resistance for higher alloyed samples was associated with the preferential attack of magnesium-rich phases, forming beneficial corrosion products which enabled a reduction in corrosion reaction kinetics. The remaining work utilised a selected alloy of Zn-2wt.% Mg-2wt.% Al composition for experimental studies. The effect of solution pH was next considered to understand the impact to corrosion behaviour in such environments. For neutral and alkaline conditions, a characteristic localised attack was noted, with improvements in corrosion performance corresponding to higher pH conditions. Acidic conditions instead led to a generalised corrosion mechanism, illustrating a more widespread and more pronounced corrosive attack on the alloy surface. The increased corrosion resistance associated with higher pH conditions was attributed to an enhanced presence and stability of beneficial corrosion products. Further work was performed to assess the effectiveness and mechanisms of action for both established and more novel corrosion inhibitor additions on the selected zinc-magnesium-aluminium alloy. This was performed by dosing designated concentrations of the inhibitor species into solution. The addition of sodium phosphate was recognised to progressively reduce the formation and evolution of anodic sites, providing enhanced levels of corrosion resistance accordingly. The growth of anodic sites was observably restricted through the local formation of insoluble metal phosphate precipitates, predicted to be tertiary phosphate species according to solubility calculations. An anodic inhibition effect was suggested via reaction of phosphate anions with that of metal cations in solution, to produce insoluble metal phosphate species at regions of anodic activity. An amino acid, L-tryptophan, was studied as a prospective corrosion inhibitor for the designated zinc-magnesium-aluminium alloy coated steel. The addition of this compound at higher concentrations revealed a beneficial impact to the corrosion performance, whereby metal loss values were reduced and localised anodic activity was curtailed. This was realised to transpire via the formation of a film on the sample surface, precipitating predominantly in cathodic regions and eventually extending to moderate coverage of anodic regions, according to time-lapse microscopy. The data suggested that this inhibitor species acted primarily as a cathodic inhibitor, restricting mass transport of oxygen at the sample surface. The mechanism of action was not definitively demonstrated, and several mechanisms were discussed. A rare earth metal compound in the form of cerium(III) chloride was also studied as a corrosion inhibitor for the zinc-magnesium-aluminium alloy in question. An inverse relationship between extent of corrosion and concentration of inhibitor addition was realised, whereby higher concentrations enabled favourable corrosion resistance levels. The development of anodic activity was hindered by the deposition of films at the sample surface, and these were noted to form only in regions of cathodic activity. It was proposed that these films were of a cerium oxide/hydroxide composition, and limit adsorption of oxygen at the sample surface, regulating corrosion kinetics and thus the rate of anodic growth. Accordingly, the overall data suggested that this compound acted through means of cathodic inhibition. The combination of techniques has enabled valuable insights to be gained into the corrosion behaviour of commercial zinc-magnesium-aluminium alloys in different environments; this has also aided in the understanding of the underlying mechanisms of action for a range of prospective corrosion inhibitors within the zinc-magnesium-aluminium system. E-Thesis corrosion, galvanising, corrosion inhibitors, scanning electrochemistry, timelapse optical microscopy 31 12 2018 2018-12-31 10.23889/SUthesis.40713 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Doctoral EngD 2020-08-28T16:31:01.5134148 2018-06-15T10:42:15.3072767 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Thomas Lewis 0000-0002-0117-0066 1 Thomas A. Lewis 0000-0002-0117-0066 2 0040713-15062018104255.pdf Lewis_Thomas_A_EngD_Thesis_Final.pdf 2018-06-15T10:42:55.2430000 Output 12891957 application/pdf E-Thesis – open access true 2018-06-15T00:00:00.0000000 true
title An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys
spellingShingle An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys
Thomas Lewis
Thomas A. Lewis
title_short An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys
title_full An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys
title_fullStr An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys
title_full_unstemmed An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys
title_sort An Investigation into the Corrosion Behaviour and Effect of Inhibitor Additions on Commercial Zn-Mg-Al Alloys
author_id_str_mv 21ad686d6dc972e226cda9146bd2861d
b376956d95dc5da407230dbfb95b8891
author_id_fullname_str_mv 21ad686d6dc972e226cda9146bd2861d_***_Thomas Lewis
b376956d95dc5da407230dbfb95b8891_***_Thomas A. Lewis
author Thomas Lewis
Thomas A. Lewis
author2 Thomas Lewis
Thomas A. Lewis
format E-Thesis
publishDate 2018
institution Swansea University
doi_str_mv 10.23889/SUthesis.40713
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description The general premise of this work was to better understand the corrosion behaviour of newer-generation zinc-magnesium-aluminium galvanising alloys. In addition to this, the impact of both novel and established corrosion inhibitor additions dosed into solution were studied to assess the effects to prospective alloy lifetimes and the underlying mechanisms of inhibitor action. This was through means of microstructural characterisation and analysis, and accelerated corrosion testing under immersion conditions; this included the use of the SVET, time-lapse optical microscopy, open-circuit potential, potentiodynamic polarisation, and gravimetric analysis. Accordingly, the microstructural attributes of three commercial grade zinc-magnesium-aluminium alloys were studied according to the differing quantities of magnesium and aluminium included in each alloy. The primary zinc-rich dendritic phases were observed to diminish in both volume fraction percentage and in size for increasing alloying addition. This was accompanied by a corresponding increase in eutectic phase volume fraction, which consisted of a binary and ternary lamellar eutectic, as confirmed by SEM-EDS. Alongside the microstructural changes, corrosion performance was noted to improve as alloying additions were increased. This was realised by SVET-measured metal loss values, of which SVET revealed fewer anodic sites and a lessened extent of anodic evolution. Time-lapse microscopy data demonstrated that corrosion was initiated in eutectic phases, attacking the MgZn2 phase in the first instance. The improved corrosion resistance for higher alloyed samples was associated with the preferential attack of magnesium-rich phases, forming beneficial corrosion products which enabled a reduction in corrosion reaction kinetics. The remaining work utilised a selected alloy of Zn-2wt.% Mg-2wt.% Al composition for experimental studies. The effect of solution pH was next considered to understand the impact to corrosion behaviour in such environments. For neutral and alkaline conditions, a characteristic localised attack was noted, with improvements in corrosion performance corresponding to higher pH conditions. Acidic conditions instead led to a generalised corrosion mechanism, illustrating a more widespread and more pronounced corrosive attack on the alloy surface. The increased corrosion resistance associated with higher pH conditions was attributed to an enhanced presence and stability of beneficial corrosion products. Further work was performed to assess the effectiveness and mechanisms of action for both established and more novel corrosion inhibitor additions on the selected zinc-magnesium-aluminium alloy. This was performed by dosing designated concentrations of the inhibitor species into solution. The addition of sodium phosphate was recognised to progressively reduce the formation and evolution of anodic sites, providing enhanced levels of corrosion resistance accordingly. The growth of anodic sites was observably restricted through the local formation of insoluble metal phosphate precipitates, predicted to be tertiary phosphate species according to solubility calculations. An anodic inhibition effect was suggested via reaction of phosphate anions with that of metal cations in solution, to produce insoluble metal phosphate species at regions of anodic activity. An amino acid, L-tryptophan, was studied as a prospective corrosion inhibitor for the designated zinc-magnesium-aluminium alloy coated steel. The addition of this compound at higher concentrations revealed a beneficial impact to the corrosion performance, whereby metal loss values were reduced and localised anodic activity was curtailed. This was realised to transpire via the formation of a film on the sample surface, precipitating predominantly in cathodic regions and eventually extending to moderate coverage of anodic regions, according to time-lapse microscopy. The data suggested that this inhibitor species acted primarily as a cathodic inhibitor, restricting mass transport of oxygen at the sample surface. The mechanism of action was not definitively demonstrated, and several mechanisms were discussed. A rare earth metal compound in the form of cerium(III) chloride was also studied as a corrosion inhibitor for the zinc-magnesium-aluminium alloy in question. An inverse relationship between extent of corrosion and concentration of inhibitor addition was realised, whereby higher concentrations enabled favourable corrosion resistance levels. The development of anodic activity was hindered by the deposition of films at the sample surface, and these were noted to form only in regions of cathodic activity. It was proposed that these films were of a cerium oxide/hydroxide composition, and limit adsorption of oxygen at the sample surface, regulating corrosion kinetics and thus the rate of anodic growth. Accordingly, the overall data suggested that this compound acted through means of cathodic inhibition. The combination of techniques has enabled valuable insights to be gained into the corrosion behaviour of commercial zinc-magnesium-aluminium alloys in different environments; this has also aided in the understanding of the underlying mechanisms of action for a range of prospective corrosion inhibitors within the zinc-magnesium-aluminium system.
published_date 2018-12-31T07:28:16Z
_version_ 1821389615201779712
score 11.0479765