Journal article 12035 views 130 downloads
Open quantum generalisation of Hopfield neural networks
P Rotondo,
M Marcuzzi,
J P Garrahan,
I Lesanovsky,
M Müller,
Markus Muller
Journal of Physics A: Mathematical and Theoretical, Volume: 51, Issue: 11, Start page: 115301
Swansea University Author: Markus Muller
DOI (Published version): 10.1088/1751-8121/aaabcb
Abstract
In this work, we propose a new framework to study how quantum effects may impact on the dynamics of neural networks. We consider neural network dynamics in terms of Markovian open quantum systems, which allows us to study both thermal and quantum coherent effects within the same framework. Specifica...
Published in: | Journal of Physics A: Mathematical and Theoretical |
---|---|
ISSN: | 1751-8113 1751-8121 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa40130 |
first_indexed |
2018-05-12T19:27:44Z |
---|---|
last_indexed |
2019-06-18T20:29:26Z |
id |
cronfa40130 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-06-18T16:51:40.3163810</datestamp><bib-version>v2</bib-version><id>40130</id><entry>2018-05-12</entry><title>Open quantum generalisation of Hopfield neural networks</title><swanseaauthors><author><sid>9b2ac559af27c967ece69db08b83762a</sid><firstname>Markus</firstname><surname>Muller</surname><name>Markus Muller</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-05-12</date><abstract>In this work, we propose a new framework to study how quantum effects may impact on the dynamics of neural networks. We consider neural network dynamics in terms of Markovian open quantum systems, which allows us to study both thermal and quantum coherent effects within the same framework. Specifically, we propose and study an open quantum generalisation of the paradigmatic Hopfield neural network model. We determine its phase diagram and encounter a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds, which can be understood as generalisations of storage patterns to the quantum domain.</abstract><type>Journal Article</type><journal>Journal of Physics A: Mathematical and Theoretical</journal><volume>51</volume><journalNumber>11</journalNumber><paginationStart>115301</paginationStart><publisher/><issnPrint>1751-8113</issnPrint><issnElectronic>1751-8121</issnElectronic><keywords>Neural Networks, Open Quantum Systems</keywords><publishedDay>14</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-02-14</publishedDate><doi>10.1088/1751-8121/aaabcb</doi><url>http://iopscience.iop.org/article/10.1088/1751-8121/aaabcb</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-06-18T16:51:40.3163810</lastEdited><Created>2018-05-12T16:58:42.7438303</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>P</firstname><surname>Rotondo</surname><order>1</order></author><author><firstname>M</firstname><surname>Marcuzzi</surname><order>2</order></author><author><firstname>J P</firstname><surname>Garrahan</surname><order>3</order></author><author><firstname>I</firstname><surname>Lesanovsky</surname><order>4</order></author><author><firstname>M</firstname><surname>Müller</surname><order>5</order></author><author><firstname>Markus</firstname><surname>Muller</surname><order>6</order></author></authors><documents><document><filename>0040130-12052018170426.pdf</filename><originalFilename>opQnet-final-submission.pdf</originalFilename><uploaded>2018-05-12T17:04:26.4170000</uploaded><type>Output</type><contentLength>3568494</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-02-14T00:00:00.0000000</embargoDate><documentNotes>12 month embargo.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-06-18T16:51:40.3163810 v2 40130 2018-05-12 Open quantum generalisation of Hopfield neural networks 9b2ac559af27c967ece69db08b83762a Markus Muller Markus Muller true false 2018-05-12 In this work, we propose a new framework to study how quantum effects may impact on the dynamics of neural networks. We consider neural network dynamics in terms of Markovian open quantum systems, which allows us to study both thermal and quantum coherent effects within the same framework. Specifically, we propose and study an open quantum generalisation of the paradigmatic Hopfield neural network model. We determine its phase diagram and encounter a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds, which can be understood as generalisations of storage patterns to the quantum domain. Journal Article Journal of Physics A: Mathematical and Theoretical 51 11 115301 1751-8113 1751-8121 Neural Networks, Open Quantum Systems 14 2 2018 2018-02-14 10.1088/1751-8121/aaabcb http://iopscience.iop.org/article/10.1088/1751-8121/aaabcb COLLEGE NANME COLLEGE CODE Swansea University 2019-06-18T16:51:40.3163810 2018-05-12T16:58:42.7438303 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics P Rotondo 1 M Marcuzzi 2 J P Garrahan 3 I Lesanovsky 4 M Müller 5 Markus Muller 6 0040130-12052018170426.pdf opQnet-final-submission.pdf 2018-05-12T17:04:26.4170000 Output 3568494 application/pdf Accepted Manuscript true 2019-02-14T00:00:00.0000000 12 month embargo. true eng |
title |
Open quantum generalisation of Hopfield neural networks |
spellingShingle |
Open quantum generalisation of Hopfield neural networks Markus Muller |
title_short |
Open quantum generalisation of Hopfield neural networks |
title_full |
Open quantum generalisation of Hopfield neural networks |
title_fullStr |
Open quantum generalisation of Hopfield neural networks |
title_full_unstemmed |
Open quantum generalisation of Hopfield neural networks |
title_sort |
Open quantum generalisation of Hopfield neural networks |
author_id_str_mv |
9b2ac559af27c967ece69db08b83762a |
author_id_fullname_str_mv |
9b2ac559af27c967ece69db08b83762a_***_Markus Muller |
author |
Markus Muller |
author2 |
P Rotondo M Marcuzzi J P Garrahan I Lesanovsky M Müller Markus Muller |
format |
Journal article |
container_title |
Journal of Physics A: Mathematical and Theoretical |
container_volume |
51 |
container_issue |
11 |
container_start_page |
115301 |
publishDate |
2018 |
institution |
Swansea University |
issn |
1751-8113 1751-8121 |
doi_str_mv |
10.1088/1751-8121/aaabcb |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
url |
http://iopscience.iop.org/article/10.1088/1751-8121/aaabcb |
document_store_str |
1 |
active_str |
0 |
description |
In this work, we propose a new framework to study how quantum effects may impact on the dynamics of neural networks. We consider neural network dynamics in terms of Markovian open quantum systems, which allows us to study both thermal and quantum coherent effects within the same framework. Specifically, we propose and study an open quantum generalisation of the paradigmatic Hopfield neural network model. We determine its phase diagram and encounter a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds, which can be understood as generalisations of storage patterns to the quantum domain. |
published_date |
2018-02-14T19:24:49Z |
_version_ |
1821344100541005824 |
score |
11.04748 |