Journal article 1160 views 365 downloads
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials
International Journal for Numerical and Analytical Methods in Geomechanics, Volume: 42, Issue: 12, Pages: 1405 - 1424
Swansea University Author: Yuntian Feng
-
PDF | Accepted Manuscript
Download (975.79KB)
DOI (Published version): 10.1002/nag.2799
Abstract
This paper presents a 3D bonded discrete element and lattice Boltzmann method for resolving the fluid‐solid interaction involving complicated fluid‐particle coupling in geomaterials. In the coupled technique, the solid material is treated as an assembly of bonded and/or granular particles. A bond mo...
Published in: | International Journal for Numerical and Analytical Methods in Geomechanics |
---|---|
ISSN: | 03639061 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39984 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-05-08T13:53:11Z |
---|---|
last_indexed |
2018-08-06T12:51:56Z |
id |
cronfa39984 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-08-06T10:00:41.0359728</datestamp><bib-version>v2</bib-version><id>39984</id><entry>2018-05-08</entry><title>A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-05-08</date><deptcode>CIVL</deptcode><abstract>This paper presents a 3D bonded discrete element and lattice Boltzmann method for resolving the fluid‐solid interaction involving complicated fluid‐particle coupling in geomaterials. In the coupled technique, the solid material is treated as an assembly of bonded and/or granular particles. A bond model accounting for strain softening in normal contact is incorporated into the discrete element method to simulate the mechanical behaviour of geomaterials, whilst the fluid flow is solved by the lattice Boltzmann method based on kinetic theory and statistical mechanics. To provide a bridge between theory and application, a 3D algorithm of immersed moving boundary scheme was proposed for resolving fluid‐particle interaction. To demonstrate the applicability and accuracy of this coupled method, a benchmark called quicksand, in which particles become fluidised under the driving of upward fluid flow, is first carried out. The critical hydraulic gradient obtained from the numerical results matches the theoretical value. Then, numerical investigation of the performance of granular filters generated according to the well‐acknowledged design criteria is given. It is found that the proposed 3D technique is promising, and the instantaneous migration of the protected soils can be readily observed. Numerical results prove that the filters which comply with the design criteria can effectively alleviate or eliminate the appearance of particle erosion in dams.</abstract><type>Journal Article</type><journal>International Journal for Numerical and Analytical Methods in Geomechanics</journal><volume>42</volume><journalNumber>12</journalNumber><paginationStart>1405</paginationStart><paginationEnd>1424</paginationEnd><publisher/><issnPrint>03639061</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1002/nag.2799</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-08-06T10:00:41.0359728</lastEdited><Created>2018-05-08T08:59:18.4532865</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Min</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Y.T.</firstname><surname>Feng</surname><order>2</order></author><author><firstname>G.N.</firstname><surname>Pande</surname><order>3</order></author><author><firstname>T.T.</firstname><surname>Zhao</surname><order>4</order></author><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>5</order></author></authors><documents><document><filename>0039984-08052018090526.pdf</filename><originalFilename>wang2018(3).pdf</originalFilename><uploaded>2018-05-08T09:05:26.6030000</uploaded><type>Output</type><contentLength>1004252</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-08-06T10:00:41.0359728 v2 39984 2018-05-08 A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 2018-05-08 CIVL This paper presents a 3D bonded discrete element and lattice Boltzmann method for resolving the fluid‐solid interaction involving complicated fluid‐particle coupling in geomaterials. In the coupled technique, the solid material is treated as an assembly of bonded and/or granular particles. A bond model accounting for strain softening in normal contact is incorporated into the discrete element method to simulate the mechanical behaviour of geomaterials, whilst the fluid flow is solved by the lattice Boltzmann method based on kinetic theory and statistical mechanics. To provide a bridge between theory and application, a 3D algorithm of immersed moving boundary scheme was proposed for resolving fluid‐particle interaction. To demonstrate the applicability and accuracy of this coupled method, a benchmark called quicksand, in which particles become fluidised under the driving of upward fluid flow, is first carried out. The critical hydraulic gradient obtained from the numerical results matches the theoretical value. Then, numerical investigation of the performance of granular filters generated according to the well‐acknowledged design criteria is given. It is found that the proposed 3D technique is promising, and the instantaneous migration of the protected soils can be readily observed. Numerical results prove that the filters which comply with the design criteria can effectively alleviate or eliminate the appearance of particle erosion in dams. Journal Article International Journal for Numerical and Analytical Methods in Geomechanics 42 12 1405 1424 03639061 31 12 2018 2018-12-31 10.1002/nag.2799 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2018-08-06T10:00:41.0359728 2018-05-08T08:59:18.4532865 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Min Wang 1 Y.T. Feng 2 G.N. Pande 3 T.T. Zhao 4 Yuntian Feng 0000-0002-6396-8698 5 0039984-08052018090526.pdf wang2018(3).pdf 2018-05-08T09:05:26.6030000 Output 1004252 application/pdf Accepted Manuscript true 2019-05-28T00:00:00.0000000 true eng |
title |
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials |
spellingShingle |
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials Yuntian Feng |
title_short |
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials |
title_full |
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials |
title_fullStr |
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials |
title_full_unstemmed |
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials |
title_sort |
A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials |
author_id_str_mv |
d66794f9c1357969a5badf654f960275 |
author_id_fullname_str_mv |
d66794f9c1357969a5badf654f960275_***_Yuntian Feng |
author |
Yuntian Feng |
author2 |
Min Wang Y.T. Feng G.N. Pande T.T. Zhao Yuntian Feng |
format |
Journal article |
container_title |
International Journal for Numerical and Analytical Methods in Geomechanics |
container_volume |
42 |
container_issue |
12 |
container_start_page |
1405 |
publishDate |
2018 |
institution |
Swansea University |
issn |
03639061 |
doi_str_mv |
10.1002/nag.2799 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
This paper presents a 3D bonded discrete element and lattice Boltzmann method for resolving the fluid‐solid interaction involving complicated fluid‐particle coupling in geomaterials. In the coupled technique, the solid material is treated as an assembly of bonded and/or granular particles. A bond model accounting for strain softening in normal contact is incorporated into the discrete element method to simulate the mechanical behaviour of geomaterials, whilst the fluid flow is solved by the lattice Boltzmann method based on kinetic theory and statistical mechanics. To provide a bridge between theory and application, a 3D algorithm of immersed moving boundary scheme was proposed for resolving fluid‐particle interaction. To demonstrate the applicability and accuracy of this coupled method, a benchmark called quicksand, in which particles become fluidised under the driving of upward fluid flow, is first carried out. The critical hydraulic gradient obtained from the numerical results matches the theoretical value. Then, numerical investigation of the performance of granular filters generated according to the well‐acknowledged design criteria is given. It is found that the proposed 3D technique is promising, and the instantaneous migration of the protected soils can be readily observed. Numerical results prove that the filters which comply with the design criteria can effectively alleviate or eliminate the appearance of particle erosion in dams. |
published_date |
2018-12-31T03:50:51Z |
_version_ |
1763752491004985344 |
score |
11.037056 |