No Cover Image

Conference Paper/Proceeding/Abstract 880 views

Performance analysis of a switched beam square loop antenna in a multipath environment

Arpan Pal, Amit Mehta Orcid Logo, Dariush Mirshekar-Syahkal

2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Pages: 2341 - 2342

Swansea University Author: Amit Mehta Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

A full system composed of Switched Beam Square Loop Antenna (SBSLA) integrated with a Raspberry Pi is presented for enhancing the throughput in a typical indoor multipath environment. The antenna system is used at the receiver and communicates with a moving handheld transceivers. The Raspberry Pi ru...

Full description

Published in: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
ISSN: 1947-1491
Published: San Diego, CA, USA 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39576
Abstract: A full system composed of Switched Beam Square Loop Antenna (SBSLA) integrated with a Raspberry Pi is presented for enhancing the throughput in a typical indoor multipath environment. The antenna system is used at the receiver and communicates with a moving handheld transceivers. The Raspberry Pi runs an `ElectroMagnetic (EM) sense, scan, analyze and lock' algorithm which tracks the direction of signal arrival for the highest RSSI (Received Signal Strength Indicator). The algorithm enabled the system to switch the radiation from the SBSLA in one of the four possible tilted beam directions by utilizing a RF SP4T switch. It is demonstrated that SBSLA (8.6 dBi) based communication system can offer an improvement in throughput up to 10 times with respect to a conventional Omni-directional antenna (3.5 dBi) based system.
College: Faculty of Science and Engineering
Start Page: 2341
End Page: 2342