Journal article 718 views
Atomically resolved real-space imaging of hot electron dynamics
Nature Communications, Volume: 6, Issue: 1
Swansea University Author: Richard Palmer
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1038/ncomms9365
Abstract
The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable tempera...
Published in: | Nature Communications |
---|---|
ISSN: | 2041-1723 2041-1723 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39514 |
Abstract: |
The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. |
---|---|
Keywords: |
Condensed-matter physics, Reaction kinetics and dynamics, Scanning probe microscopy |
College: |
Faculty of Science and Engineering |
Issue: |
1 |