Conference Paper/Proceeding/Abstract 1371 views 516 downloads
Recurrent Neural Networks for Financial Time-Series Modelling
Pages: 892 - 897
Swansea University Authors: Jingjing Deng, Xianghua Xie
-
PDF | Accepted Manuscript
Download (497.46KB)
DOI (Published version): 10.1109/ICPR.2018.8545666
Abstract
In this paper, we present a novel deep Long Short-Term Memory (LSTM) based time-series data modelling for use in stock market index prediction. A dataset comprised of six market indices from around the world were chosen to demonstrate the robustness in varying market conditions with an aim to foreca...
ISSN: | 1051-4651 |
---|---|
Published: |
Beijing, China
25th International Conference on Pattern Recognition
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39477 |
first_indexed |
2018-04-18T19:32:40Z |
---|---|
last_indexed |
2019-01-22T19:49:07Z |
id |
cronfa39477 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-01-22T16:40:31.2152727</datestamp><bib-version>v2</bib-version><id>39477</id><entry>2018-04-18</entry><title>Recurrent Neural Networks for Financial Time-Series Modelling</title><swanseaauthors><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-18</date><deptcode>MACS</deptcode><abstract>In this paper, we present a novel deep Long Short-Term Memory (LSTM) based time-series data modelling for use in stock market index prediction. A dataset comprised of six market indices from around the world were chosen to demonstrate the robustness in varying market conditions with an aim to forecast the next day closing price.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal/><paginationStart>892</paginationStart><paginationEnd>897</paginationEnd><publisher>25th International Conference on Pattern Recognition</publisher><placeOfPublication>Beijing, China</placeOfPublication><issnElectronic>1051-4651</issnElectronic><keywords>Deep Learning, Neural networks, time series data analysis, financial modelling.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1109/ICPR.2018.8545666</doi><url>http://www.icpr2018.org/index.php?m=content&amp;c=index&amp;a=init</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-01-22T16:40:31.2152727</lastEdited><Created>2018-04-18T18:38:03.1738031</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Gavin</firstname><surname>Tsang</surname><order>1</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>2</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>3</order></author></authors><documents><document><filename>0039477-18042018183853.pdf</filename><originalFilename>icpr2018.pdf</originalFilename><uploaded>2018-04-18T18:38:53.4070000</uploaded><type>Output</type><contentLength>478640</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-01-21T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-01-22T16:40:31.2152727 v2 39477 2018-04-18 Recurrent Neural Networks for Financial Time-Series Modelling 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2018-04-18 MACS In this paper, we present a novel deep Long Short-Term Memory (LSTM) based time-series data modelling for use in stock market index prediction. A dataset comprised of six market indices from around the world were chosen to demonstrate the robustness in varying market conditions with an aim to forecast the next day closing price. Conference Paper/Proceeding/Abstract 892 897 25th International Conference on Pattern Recognition Beijing, China 1051-4651 Deep Learning, Neural networks, time series data analysis, financial modelling. 31 12 2018 2018-12-31 10.1109/ICPR.2018.8545666 http://www.icpr2018.org/index.php?m=content&c=index&a=init COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2019-01-22T16:40:31.2152727 2018-04-18T18:38:03.1738031 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Gavin Tsang 1 Jingjing Deng 2 Xianghua Xie 0000-0002-2701-8660 3 0039477-18042018183853.pdf icpr2018.pdf 2018-04-18T18:38:53.4070000 Output 478640 application/pdf Accepted Manuscript true 2019-01-21T00:00:00.0000000 true eng |
title |
Recurrent Neural Networks for Financial Time-Series Modelling |
spellingShingle |
Recurrent Neural Networks for Financial Time-Series Modelling Jingjing Deng Xianghua Xie |
title_short |
Recurrent Neural Networks for Financial Time-Series Modelling |
title_full |
Recurrent Neural Networks for Financial Time-Series Modelling |
title_fullStr |
Recurrent Neural Networks for Financial Time-Series Modelling |
title_full_unstemmed |
Recurrent Neural Networks for Financial Time-Series Modelling |
title_sort |
Recurrent Neural Networks for Financial Time-Series Modelling |
author_id_str_mv |
6f6d01d585363d6dc1622640bb4fcb3f b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Jingjing Deng Xianghua Xie |
author2 |
Gavin Tsang Jingjing Deng Xianghua Xie |
format |
Conference Paper/Proceeding/Abstract |
container_start_page |
892 |
publishDate |
2018 |
institution |
Swansea University |
issn |
1051-4651 |
doi_str_mv |
10.1109/ICPR.2018.8545666 |
publisher |
25th International Conference on Pattern Recognition |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://www.icpr2018.org/index.php?m=content&c=index&a=init |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we present a novel deep Long Short-Term Memory (LSTM) based time-series data modelling for use in stock market index prediction. A dataset comprised of six market indices from around the world were chosen to demonstrate the robustness in varying market conditions with an aim to forecast the next day closing price. |
published_date |
2018-12-31T01:35:50Z |
_version_ |
1821367442449891328 |
score |
11.04748 |