Conference Paper/Proceeding/Abstract 1065 views
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment
2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Pages: 168 - 173
Swansea University Author:
Xiuyi Fan
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/mfi.2016.7849484
Abstract
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment
| Published in: | 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) |
|---|---|
| ISBN: | 978-1-4673-9709-4 978-1-4673-9708-7 |
| Published: |
Baden-Baden, Germany
IEEE
2016
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa39399 |
| first_indexed |
2018-04-13T19:29:17Z |
|---|---|
| last_indexed |
2018-04-17T12:21:51Z |
| id |
cronfa39399 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-04-17T09:21:42.9909973</datestamp><bib-version>v2</bib-version><id>39399</id><entry>2018-04-13</entry><title>Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment</title><swanseaauthors><author><sid>a88a07c43b3e80f27cb96897d1bc2534</sid><ORCID>0000-0003-1223-9986</ORCID><firstname>Xiuyi</firstname><surname>Fan</surname><name>Xiuyi Fan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-13</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)</journal><paginationStart>168</paginationStart><paginationEnd>173</paginationEnd><publisher>IEEE</publisher><placeOfPublication>Baden-Baden, Germany</placeOfPublication><isbnPrint>978-1-4673-9709-4</isbnPrint><isbnElectronic>978-1-4673-9708-7</isbnElectronic><keywords/><publishedDay>19</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-09-19</publishedDate><doi>10.1109/mfi.2016.7849484</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-04-17T09:21:42.9909973</lastEdited><Created>2018-04-13T15:31:03.4305719</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Xiuyi</firstname><surname>Fan</surname><orcid>0000-0003-1223-9986</orcid><order>1</order></author><author><firstname>Huiguo</firstname><surname>Zhang</surname><order>2</order></author><author><firstname>Cyril</firstname><surname>Leung</surname><order>3</order></author><author><firstname>Chunyan</firstname><surname>Miao</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2018-04-17T09:21:42.9909973 v2 39399 2018-04-13 Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment a88a07c43b3e80f27cb96897d1bc2534 0000-0003-1223-9986 Xiuyi Fan Xiuyi Fan true false 2018-04-13 MACS Conference Paper/Proceeding/Abstract 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) 168 173 IEEE Baden-Baden, Germany 978-1-4673-9709-4 978-1-4673-9708-7 19 9 2016 2016-09-19 10.1109/mfi.2016.7849484 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-04-17T09:21:42.9909973 2018-04-13T15:31:03.4305719 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Xiuyi Fan 0000-0003-1223-9986 1 Huiguo Zhang 2 Cyril Leung 3 Chunyan Miao 4 |
| title |
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment |
| spellingShingle |
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment Xiuyi Fan |
| title_short |
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment |
| title_full |
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment |
| title_fullStr |
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment |
| title_full_unstemmed |
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment |
| title_sort |
Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment |
| author_id_str_mv |
a88a07c43b3e80f27cb96897d1bc2534 |
| author_id_fullname_str_mv |
a88a07c43b3e80f27cb96897d1bc2534_***_Xiuyi Fan |
| author |
Xiuyi Fan |
| author2 |
Xiuyi Fan Huiguo Zhang Cyril Leung Chunyan Miao |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) |
| container_start_page |
168 |
| publishDate |
2016 |
| institution |
Swansea University |
| isbn |
978-1-4673-9709-4 978-1-4673-9708-7 |
| doi_str_mv |
10.1109/mfi.2016.7849484 |
| publisher |
IEEE |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2016-09-19T04:20:17Z |
| _version_ |
1851093593547079680 |
| score |
11.089386 |

