Journal article 1245 views 98 downloads
Weihrauch-completeness for layerwise computability
Logical Methods in Computer Science, Volume: 14, Issue: 2
Swansea University Author: Arno Pauly
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (458.04KB)
DOI (Published version): 10.23638/LMCS-14(2:11)2018
Abstract
We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former...
Published in: | Logical Methods in Computer Science |
---|---|
Published: |
2018
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39359 |
first_indexed |
2018-04-11T09:25:35Z |
---|---|
last_indexed |
2018-08-31T13:34:35Z |
id |
cronfa39359 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-08-31T12:35:01.0941949</datestamp><bib-version>v2</bib-version><id>39359</id><entry>2018-04-10</entry><title>Weihrauch-completeness for layerwise computability</title><swanseaauthors><author><sid>17a56a78ec04e7fc47b7fe18394d7245</sid><ORCID>0000-0002-0173-3295</ORCID><firstname>Arno</firstname><surname>Pauly</surname><name>Arno Pauly</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-10</date><deptcode>MACS</deptcode><abstract>We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former examples but fail to be layerwise computable.</abstract><type>Journal Article</type><journal>Logical Methods in Computer Science</journal><volume>14</volume><journalNumber>2</journalNumber><publisher/><keywords>Weihrauch reducibility, randomness, layerwise computability, computable analysis</keywords><publishedDay>22</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-05-22</publishedDate><doi>10.23638/LMCS-14(2:11)2018</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-08-31T12:35:01.0941949</lastEdited><Created>2018-04-10T13:53:39.1394610</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Arno</firstname><surname>Pauly</surname><orcid>0000-0002-0173-3295</orcid><order>1</order></author><author><firstname>Willem</firstname><surname>Fouche</surname><order>2</order></author><author><firstname>George</firstname><surname>Davie</surname><order>3</order></author></authors><documents><document><filename>0039359-22062018153511.pdf</filename><originalFilename>39359.pdf</originalFilename><uploaded>2018-06-22T15:35:11.3800000</uploaded><type>Output</type><contentLength>421557</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-06-22T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-08-31T12:35:01.0941949 v2 39359 2018-04-10 Weihrauch-completeness for layerwise computability 17a56a78ec04e7fc47b7fe18394d7245 0000-0002-0173-3295 Arno Pauly Arno Pauly true false 2018-04-10 MACS We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former examples but fail to be layerwise computable. Journal Article Logical Methods in Computer Science 14 2 Weihrauch reducibility, randomness, layerwise computability, computable analysis 22 5 2018 2018-05-22 10.23638/LMCS-14(2:11)2018 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-08-31T12:35:01.0941949 2018-04-10T13:53:39.1394610 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Arno Pauly 0000-0002-0173-3295 1 Willem Fouche 2 George Davie 3 0039359-22062018153511.pdf 39359.pdf 2018-06-22T15:35:11.3800000 Output 421557 application/pdf Version of Record true 2018-06-22T00:00:00.0000000 Released under the terms of a Creative Commons Attribution License (CC-BY). true eng |
title |
Weihrauch-completeness for layerwise computability |
spellingShingle |
Weihrauch-completeness for layerwise computability Arno Pauly |
title_short |
Weihrauch-completeness for layerwise computability |
title_full |
Weihrauch-completeness for layerwise computability |
title_fullStr |
Weihrauch-completeness for layerwise computability |
title_full_unstemmed |
Weihrauch-completeness for layerwise computability |
title_sort |
Weihrauch-completeness for layerwise computability |
author_id_str_mv |
17a56a78ec04e7fc47b7fe18394d7245 |
author_id_fullname_str_mv |
17a56a78ec04e7fc47b7fe18394d7245_***_Arno Pauly |
author |
Arno Pauly |
author2 |
Arno Pauly Willem Fouche George Davie |
format |
Journal article |
container_title |
Logical Methods in Computer Science |
container_volume |
14 |
container_issue |
2 |
publishDate |
2018 |
institution |
Swansea University |
doi_str_mv |
10.23638/LMCS-14(2:11)2018 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former examples but fail to be layerwise computable. |
published_date |
2018-05-22T13:29:31Z |
_version_ |
1821412343173611520 |
score |
11.048085 |