No Cover Image

Journal article 1245 views 98 downloads

Weihrauch-completeness for layerwise computability

Arno Pauly Orcid Logo, Willem Fouche, George Davie

Logical Methods in Computer Science, Volume: 14, Issue: 2

Swansea University Author: Arno Pauly Orcid Logo

  • 39359.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (458.04KB)

DOI (Published version): 10.23638/LMCS-14(2:11)2018

Abstract

We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former...

Full description

Published in: Logical Methods in Computer Science
Published: 2018
URI: https://cronfa.swan.ac.uk/Record/cronfa39359
first_indexed 2018-04-11T09:25:35Z
last_indexed 2018-08-31T13:34:35Z
id cronfa39359
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-08-31T12:35:01.0941949</datestamp><bib-version>v2</bib-version><id>39359</id><entry>2018-04-10</entry><title>Weihrauch-completeness for layerwise computability</title><swanseaauthors><author><sid>17a56a78ec04e7fc47b7fe18394d7245</sid><ORCID>0000-0002-0173-3295</ORCID><firstname>Arno</firstname><surname>Pauly</surname><name>Arno Pauly</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-10</date><deptcode>MACS</deptcode><abstract>We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former examples but fail to be layerwise computable.</abstract><type>Journal Article</type><journal>Logical Methods in Computer Science</journal><volume>14</volume><journalNumber>2</journalNumber><publisher/><keywords>Weihrauch reducibility, randomness, layerwise computability, computable analysis</keywords><publishedDay>22</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-05-22</publishedDate><doi>10.23638/LMCS-14(2:11)2018</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-08-31T12:35:01.0941949</lastEdited><Created>2018-04-10T13:53:39.1394610</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Arno</firstname><surname>Pauly</surname><orcid>0000-0002-0173-3295</orcid><order>1</order></author><author><firstname>Willem</firstname><surname>Fouche</surname><order>2</order></author><author><firstname>George</firstname><surname>Davie</surname><order>3</order></author></authors><documents><document><filename>0039359-22062018153511.pdf</filename><originalFilename>39359.pdf</originalFilename><uploaded>2018-06-22T15:35:11.3800000</uploaded><type>Output</type><contentLength>421557</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-06-22T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-08-31T12:35:01.0941949 v2 39359 2018-04-10 Weihrauch-completeness for layerwise computability 17a56a78ec04e7fc47b7fe18394d7245 0000-0002-0173-3295 Arno Pauly Arno Pauly true false 2018-04-10 MACS We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former examples but fail to be layerwise computable. Journal Article Logical Methods in Computer Science 14 2 Weihrauch reducibility, randomness, layerwise computability, computable analysis 22 5 2018 2018-05-22 10.23638/LMCS-14(2:11)2018 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-08-31T12:35:01.0941949 2018-04-10T13:53:39.1394610 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Arno Pauly 0000-0002-0173-3295 1 Willem Fouche 2 George Davie 3 0039359-22062018153511.pdf 39359.pdf 2018-06-22T15:35:11.3800000 Output 421557 application/pdf Version of Record true 2018-06-22T00:00:00.0000000 Released under the terms of a Creative Commons Attribution License (CC-BY). true eng
title Weihrauch-completeness for layerwise computability
spellingShingle Weihrauch-completeness for layerwise computability
Arno Pauly
title_short Weihrauch-completeness for layerwise computability
title_full Weihrauch-completeness for layerwise computability
title_fullStr Weihrauch-completeness for layerwise computability
title_full_unstemmed Weihrauch-completeness for layerwise computability
title_sort Weihrauch-completeness for layerwise computability
author_id_str_mv 17a56a78ec04e7fc47b7fe18394d7245
author_id_fullname_str_mv 17a56a78ec04e7fc47b7fe18394d7245_***_Arno Pauly
author Arno Pauly
author2 Arno Pauly
Willem Fouche
George Davie
format Journal article
container_title Logical Methods in Computer Science
container_volume 14
container_issue 2
publishDate 2018
institution Swansea University
doi_str_mv 10.23638/LMCS-14(2:11)2018
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former examples but fail to be layerwise computable.
published_date 2018-05-22T13:29:31Z
_version_ 1821412343173611520
score 11.048085