No Cover Image

Journal article 1407 views 200 downloads

BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations

Guangying Lv, Hongjun Gao, Jinlong Wei, Jiang-lun Wu

Journal of Differential Equations, Volume: 266, Issue: 5, Pages: 2666 - 2717

Swansea University Author: Jiang-lun Wu

  • LvGWWu.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (500.69KB)

Abstract

In this paper, we are aiming to prove several regularity results for the following stochastic fractional heat equations with additive noises \bessdu_t(x)=\Delta^{\frac{\alpha}{2}} u_t(x)dt+g(t,x)d\eta_t,\ \ \ u_0=0,\ \ \ t\in(0,T], \, x\in G, \eessfor a random field $u:(t,x)\in [0,T]\times G\mapsto...

Full description

Published in: Journal of Differential Equations
ISSN: 0022-0396
Published: Elsevier BV 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39312
first_indexed 2018-04-04T19:33:14Z
last_indexed 2020-07-27T18:59:39Z
id cronfa39312
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-27T15:19:49.9530742</datestamp><bib-version>v2</bib-version><id>39312</id><entry>2018-04-04</entry><title>BMO and Morrey&#x2013;Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-04</date><abstract>In this paper, we are aiming to prove several regularity results for the following stochastic fractional heat equations with additive noises \bessdu_t(x)=\Delta^{\frac{\alpha}{2}} u_t(x)dt+g(t,x)d\eta_t,\ \ \ u_0=0,\ \ \ t\in(0,T], \, x\in G, \eessfor a random field $u:(t,x)\in [0,T]\times G\mapsto u(t,x)=:u_t(x)\in\mathbb{R}$, where $\Delta^{\frac{\alpha}{2}}:=-(-\Delta)^{\frac{\alpha}{2}}, \alpha\in(0,2]$, is the fractional Laplacian, $T\in(0,\infty)$ is arbitrarily fixed, $G\subset\mathbb{R}^d$ is a bounded domain,$g:[0,T]\times G\times\Omega\to\mathbb{R}$ is a joint measurable coefficient, and $\eta_t, t\in[0,\infty)$, is either a Brownian motion or a L\'evy process on a given filtered probability space $(\Omega,\mathcal{F},P;\{\mathcal{F}_t\}_{t\in[0,T]})$. To this end, we derive the BMO estimates and Morrey-Campanato estimates, respectively, for stochastic singular integral operators arising from the equations concerned. Then, by utilising the embedding theory between the Campanato space and the H\"older space, we establish the controllability of the norm of the space $C^{\theta,\theta/2}(\bar D)$, where $\theta\ge0,\bar D=[0,T]\times\bar G$. With all these in hand, we are able to show that the $q$-th order BMO quasi-norm of the $\frac{\alpha}{q_0}$-order derivative of the solution $u$ is controlled by the norm of $g$ under the condition that $\eta_t$ is a L\'evy process. Finally, we derive the Schauder estimate for the $p$-moments of the solution of the above stochastic fractional heat equations driven by L\'evy noise.</abstract><type>Journal Article</type><journal>Journal of Differential Equations</journal><volume>266</volume><journalNumber>5</journalNumber><paginationStart>2666</paginationStart><paginationEnd>2717</paginationEnd><publisher>Elsevier BV</publisher><issnPrint>0022-0396</issnPrint><keywords>Anomalous diffusion; It\^{o}&amp;apos;s formula; BMO estimates; Morrey-Campanato estimates; Schauder estimate</keywords><publishedDay>15</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-02-15</publishedDate><doi>10.1016/j.jde.2018.08.042</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-27T15:19:49.9530742</lastEdited><Created>2018-04-04T16:02:38.7566184</Created><authors><author><firstname>Guangying</firstname><surname>Lv</surname><order>1</order></author><author><firstname>Hongjun</firstname><surname>Gao</surname><order>2</order></author><author><firstname>Jinlong</firstname><surname>Wei</surname><order>3</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>4</order></author></authors><documents><document><filename>0039312-04042018160715.pdf</filename><originalFilename>LvGWWu.pdf</originalFilename><uploaded>2018-04-04T16:07:15.6000000</uploaded><type>Output</type><contentLength>444222</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-08-31T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-27T15:19:49.9530742 v2 39312 2018-04-04 BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2018-04-04 In this paper, we are aiming to prove several regularity results for the following stochastic fractional heat equations with additive noises \bessdu_t(x)=\Delta^{\frac{\alpha}{2}} u_t(x)dt+g(t,x)d\eta_t,\ \ \ u_0=0,\ \ \ t\in(0,T], \, x\in G, \eessfor a random field $u:(t,x)\in [0,T]\times G\mapsto u(t,x)=:u_t(x)\in\mathbb{R}$, where $\Delta^{\frac{\alpha}{2}}:=-(-\Delta)^{\frac{\alpha}{2}}, \alpha\in(0,2]$, is the fractional Laplacian, $T\in(0,\infty)$ is arbitrarily fixed, $G\subset\mathbb{R}^d$ is a bounded domain,$g:[0,T]\times G\times\Omega\to\mathbb{R}$ is a joint measurable coefficient, and $\eta_t, t\in[0,\infty)$, is either a Brownian motion or a L\'evy process on a given filtered probability space $(\Omega,\mathcal{F},P;\{\mathcal{F}_t\}_{t\in[0,T]})$. To this end, we derive the BMO estimates and Morrey-Campanato estimates, respectively, for stochastic singular integral operators arising from the equations concerned. Then, by utilising the embedding theory between the Campanato space and the H\"older space, we establish the controllability of the norm of the space $C^{\theta,\theta/2}(\bar D)$, where $\theta\ge0,\bar D=[0,T]\times\bar G$. With all these in hand, we are able to show that the $q$-th order BMO quasi-norm of the $\frac{\alpha}{q_0}$-order derivative of the solution $u$ is controlled by the norm of $g$ under the condition that $\eta_t$ is a L\'evy process. Finally, we derive the Schauder estimate for the $p$-moments of the solution of the above stochastic fractional heat equations driven by L\'evy noise. Journal Article Journal of Differential Equations 266 5 2666 2717 Elsevier BV 0022-0396 Anomalous diffusion; It\^{o}&apos;s formula; BMO estimates; Morrey-Campanato estimates; Schauder estimate 15 2 2019 2019-02-15 10.1016/j.jde.2018.08.042 COLLEGE NANME COLLEGE CODE Swansea University 2020-07-27T15:19:49.9530742 2018-04-04T16:02:38.7566184 Guangying Lv 1 Hongjun Gao 2 Jinlong Wei 3 Jiang-lun Wu 4 0039312-04042018160715.pdf LvGWWu.pdf 2018-04-04T16:07:15.6000000 Output 444222 application/pdf Accepted Manuscript true 2019-08-31T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
spellingShingle BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
Jiang-lun Wu
title_short BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
title_full BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
title_fullStr BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
title_full_unstemmed BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
title_sort BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Guangying Lv
Hongjun Gao
Jinlong Wei
Jiang-lun Wu
format Journal article
container_title Journal of Differential Equations
container_volume 266
container_issue 5
container_start_page 2666
publishDate 2019
institution Swansea University
issn 0022-0396
doi_str_mv 10.1016/j.jde.2018.08.042
publisher Elsevier BV
document_store_str 1
active_str 0
description In this paper, we are aiming to prove several regularity results for the following stochastic fractional heat equations with additive noises \bessdu_t(x)=\Delta^{\frac{\alpha}{2}} u_t(x)dt+g(t,x)d\eta_t,\ \ \ u_0=0,\ \ \ t\in(0,T], \, x\in G, \eessfor a random field $u:(t,x)\in [0,T]\times G\mapsto u(t,x)=:u_t(x)\in\mathbb{R}$, where $\Delta^{\frac{\alpha}{2}}:=-(-\Delta)^{\frac{\alpha}{2}}, \alpha\in(0,2]$, is the fractional Laplacian, $T\in(0,\infty)$ is arbitrarily fixed, $G\subset\mathbb{R}^d$ is a bounded domain,$g:[0,T]\times G\times\Omega\to\mathbb{R}$ is a joint measurable coefficient, and $\eta_t, t\in[0,\infty)$, is either a Brownian motion or a L\'evy process on a given filtered probability space $(\Omega,\mathcal{F},P;\{\mathcal{F}_t\}_{t\in[0,T]})$. To this end, we derive the BMO estimates and Morrey-Campanato estimates, respectively, for stochastic singular integral operators arising from the equations concerned. Then, by utilising the embedding theory between the Campanato space and the H\"older space, we establish the controllability of the norm of the space $C^{\theta,\theta/2}(\bar D)$, where $\theta\ge0,\bar D=[0,T]\times\bar G$. With all these in hand, we are able to show that the $q$-th order BMO quasi-norm of the $\frac{\alpha}{q_0}$-order derivative of the solution $u$ is controlled by the norm of $g$ under the condition that $\eta_t$ is a L\'evy process. Finally, we derive the Schauder estimate for the $p$-moments of the solution of the above stochastic fractional heat equations driven by L\'evy noise.
published_date 2019-02-15T19:28:00Z
_version_ 1822159672829804544
score 11.048453