No Cover Image

Journal article 1478 views 806 downloads

Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells

Kavitha Shivaji, Suganya Mani, Ponnusamy Ponmurugan, Catherine De Castro Orcid Logo, Matthew Lloyd Davies, Mythili Gnanamangai Balasubramanian, Sudhagar Pitchaimuthu Orcid Logo, Matthew Davies Orcid Logo

ACS Applied Nano Materials, Volume: 1, Issue: 4, Pages: 1683 - 1693

Swansea University Authors: Catherine De Castro Orcid Logo, Sudhagar Pitchaimuthu Orcid Logo, Matthew Davies Orcid Logo

Check full text

DOI (Published version): 10.1021/acsanm.8b00147

Abstract

Low dimensional semiconductor quantum dots (<10 nm) have received great attention for potential use in biomedical applications (diagnosis and therapy) for which larger nanoparticles (>10 nm) are not suitable. Here, we demonstrate a green, biogenic synthesis route for making CdS quantum dots (Q...

Full description

Published in: ACS Applied Nano Materials
ISSN: 2574-0970 2574-0970
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39008
first_indexed 2018-03-12T14:33:27Z
last_indexed 2021-09-25T02:57:55Z
id cronfa39008
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-09-24T15:48:47.1414926</datestamp><bib-version>v2</bib-version><id>39008</id><entry>2018-03-12</entry><title>Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells</title><swanseaauthors><author><sid>9523c09d78056932bb9b6959b559323e</sid><ORCID>0000-0003-0649-3427</ORCID><firstname>Catherine</firstname><surname>De Castro</surname><name>Catherine De Castro</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2fdbee02f4bfc5a1b174c8bd04afbd2b</sid><ORCID>0000-0001-9098-8806</ORCID><firstname>Sudhagar</firstname><surname>Pitchaimuthu</surname><name>Sudhagar Pitchaimuthu</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-03-12</date><abstract>Low dimensional semiconductor quantum dots (&lt;10 nm) have received great attention for potential use in biomedical applications (diagnosis and therapy) for which larger nanoparticles (&gt;10 nm) are not suitable. Here, we demonstrate a green, biogenic synthesis route for making CdS quantum dots (QDs) with 2-5 nm particle size using tea leaf extract (Camellia sinensis) as a toxic-free particle stabilizing agent. We have explored the biological activity of these CdS QDs in different applications, namely; a) antibacterial activity b) bioimaging and c) apoptosis of lung cancer cells. The antibacterial activity of the CdS QDs has been studied against different types of bacteria growth, showing that CdS QDs effectively inhibit the bacterial growth and exhibit cytotoxicity towards A549 cancer cells when compared to a control (no QD treatment). We have compared this cytotoxicity effect on A549 cancer cells with a standard drug, cisplatin, showing comparable results. Additionally, these CdS QDs produce high contrast fluorescence images of A549 cancer cells indicating a strong interaction with the cancer cell. To further understand the role of CdS QDs in bioimaging and cytotoxicity effect in A549 cells, fluorescence emission and flow cytometry analysis were carried out. The fluorescence emission of CdS QDs were recorded with &#x3BB;exc= 410 nm, showing concentration dependence fluorescence emission centered at 670 nm. From the flow cytometry analysis, it is confirmed that the CdS QDs are arresting the A549 cell growth at the S phase of cell cycle, inhibiting further growth of lung cancer cell. The multifunctional advantages of Camellia sinensis extract mediated green CdS QDs will be of widespread interest in implementing in-vivo based bioimaging and therapeutic cancer treatment applications.</abstract><type>Journal Article</type><journal>ACS Applied Nano Materials</journal><volume>1</volume><journalNumber>4</journalNumber><paginationStart>1683</paginationStart><paginationEnd>1693</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2574-0970</issnPrint><issnElectronic>2574-0970</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1021/acsanm.8b00147</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-09-24T15:48:47.1414926</lastEdited><Created>2018-03-12T08:43:41.9383889</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Kavitha</firstname><surname>Shivaji</surname><order>1</order></author><author><firstname>Suganya</firstname><surname>Mani</surname><order>2</order></author><author><firstname>Ponnusamy</firstname><surname>Ponmurugan</surname><order>3</order></author><author><firstname>Catherine</firstname><surname>De Castro</surname><orcid>0000-0003-0649-3427</orcid><order>4</order></author><author><firstname>Matthew Lloyd</firstname><surname>Davies</surname><order>5</order></author><author><firstname>Mythili Gnanamangai</firstname><surname>Balasubramanian</surname><order>6</order></author><author><firstname>Sudhagar</firstname><surname>Pitchaimuthu</surname><orcid>0000-0001-9098-8806</orcid><order>7</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>8</order></author></authors><documents><document><filename>0039008-12032018084703.pdf</filename><originalFilename>shivaji2018.pdf</originalFilename><uploaded>2018-03-12T08:47:03.6970000</uploaded><type>Output</type><contentLength>2032209</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-03-09T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-09-24T15:48:47.1414926 v2 39008 2018-03-12 Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells 9523c09d78056932bb9b6959b559323e 0000-0003-0649-3427 Catherine De Castro Catherine De Castro true false 2fdbee02f4bfc5a1b174c8bd04afbd2b 0000-0001-9098-8806 Sudhagar Pitchaimuthu Sudhagar Pitchaimuthu true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false 2018-03-12 Low dimensional semiconductor quantum dots (<10 nm) have received great attention for potential use in biomedical applications (diagnosis and therapy) for which larger nanoparticles (>10 nm) are not suitable. Here, we demonstrate a green, biogenic synthesis route for making CdS quantum dots (QDs) with 2-5 nm particle size using tea leaf extract (Camellia sinensis) as a toxic-free particle stabilizing agent. We have explored the biological activity of these CdS QDs in different applications, namely; a) antibacterial activity b) bioimaging and c) apoptosis of lung cancer cells. The antibacterial activity of the CdS QDs has been studied against different types of bacteria growth, showing that CdS QDs effectively inhibit the bacterial growth and exhibit cytotoxicity towards A549 cancer cells when compared to a control (no QD treatment). We have compared this cytotoxicity effect on A549 cancer cells with a standard drug, cisplatin, showing comparable results. Additionally, these CdS QDs produce high contrast fluorescence images of A549 cancer cells indicating a strong interaction with the cancer cell. To further understand the role of CdS QDs in bioimaging and cytotoxicity effect in A549 cells, fluorescence emission and flow cytometry analysis were carried out. The fluorescence emission of CdS QDs were recorded with λexc= 410 nm, showing concentration dependence fluorescence emission centered at 670 nm. From the flow cytometry analysis, it is confirmed that the CdS QDs are arresting the A549 cell growth at the S phase of cell cycle, inhibiting further growth of lung cancer cell. The multifunctional advantages of Camellia sinensis extract mediated green CdS QDs will be of widespread interest in implementing in-vivo based bioimaging and therapeutic cancer treatment applications. Journal Article ACS Applied Nano Materials 1 4 1683 1693 2574-0970 2574-0970 31 12 2018 2018-12-31 10.1021/acsanm.8b00147 COLLEGE NANME COLLEGE CODE Swansea University 2021-09-24T15:48:47.1414926 2018-03-12T08:43:41.9383889 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Kavitha Shivaji 1 Suganya Mani 2 Ponnusamy Ponmurugan 3 Catherine De Castro 0000-0003-0649-3427 4 Matthew Lloyd Davies 5 Mythili Gnanamangai Balasubramanian 6 Sudhagar Pitchaimuthu 0000-0001-9098-8806 7 Matthew Davies 0000-0003-2595-5121 8 0039008-12032018084703.pdf shivaji2018.pdf 2018-03-12T08:47:03.6970000 Output 2032209 application/pdf Accepted Manuscript true 2019-03-09T00:00:00.0000000 true eng
title Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells
spellingShingle Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells
Catherine De Castro
Sudhagar Pitchaimuthu
Matthew Davies
title_short Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells
title_full Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells
title_fullStr Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells
title_full_unstemmed Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells
title_sort Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells
author_id_str_mv 9523c09d78056932bb9b6959b559323e
2fdbee02f4bfc5a1b174c8bd04afbd2b
4ad478e342120ca3434657eb13527636
author_id_fullname_str_mv 9523c09d78056932bb9b6959b559323e_***_Catherine De Castro
2fdbee02f4bfc5a1b174c8bd04afbd2b_***_Sudhagar Pitchaimuthu
4ad478e342120ca3434657eb13527636_***_Matthew Davies
author Catherine De Castro
Sudhagar Pitchaimuthu
Matthew Davies
author2 Kavitha Shivaji
Suganya Mani
Ponnusamy Ponmurugan
Catherine De Castro
Matthew Lloyd Davies
Mythili Gnanamangai Balasubramanian
Sudhagar Pitchaimuthu
Matthew Davies
format Journal article
container_title ACS Applied Nano Materials
container_volume 1
container_issue 4
container_start_page 1683
publishDate 2018
institution Swansea University
issn 2574-0970
2574-0970
doi_str_mv 10.1021/acsanm.8b00147
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Low dimensional semiconductor quantum dots (<10 nm) have received great attention for potential use in biomedical applications (diagnosis and therapy) for which larger nanoparticles (>10 nm) are not suitable. Here, we demonstrate a green, biogenic synthesis route for making CdS quantum dots (QDs) with 2-5 nm particle size using tea leaf extract (Camellia sinensis) as a toxic-free particle stabilizing agent. We have explored the biological activity of these CdS QDs in different applications, namely; a) antibacterial activity b) bioimaging and c) apoptosis of lung cancer cells. The antibacterial activity of the CdS QDs has been studied against different types of bacteria growth, showing that CdS QDs effectively inhibit the bacterial growth and exhibit cytotoxicity towards A549 cancer cells when compared to a control (no QD treatment). We have compared this cytotoxicity effect on A549 cancer cells with a standard drug, cisplatin, showing comparable results. Additionally, these CdS QDs produce high contrast fluorescence images of A549 cancer cells indicating a strong interaction with the cancer cell. To further understand the role of CdS QDs in bioimaging and cytotoxicity effect in A549 cells, fluorescence emission and flow cytometry analysis were carried out. The fluorescence emission of CdS QDs were recorded with λexc= 410 nm, showing concentration dependence fluorescence emission centered at 670 nm. From the flow cytometry analysis, it is confirmed that the CdS QDs are arresting the A549 cell growth at the S phase of cell cycle, inhibiting further growth of lung cancer cell. The multifunctional advantages of Camellia sinensis extract mediated green CdS QDs will be of widespread interest in implementing in-vivo based bioimaging and therapeutic cancer treatment applications.
published_date 2018-12-31T04:25:57Z
_version_ 1821378144782778368
score 11.3749895