Journal article 940 views 186 downloads
Diagnostic Potential of Imaging Flow Cytometry
Minh Doan,
Ivan Vorobjev,
Paul Rees ,
Andrew Filby,
Olaf Wolkenhauer,
Anne E. Goldfeld,
Judy Lieberman,
Natasha Barteneva,
Anne E. Carpenter,
Holger Hennig
Trends in Biotechnology
Swansea University Author: Paul Rees
-
PDF | Version of Record
Download (984.85KB)
DOI (Published version): 10.1016/j.tibtech.2017.12.008
Abstract
Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation...
Published in: | Trends in Biotechnology |
---|---|
ISSN: | 0167-7799 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa38407 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-02-06T20:28:25Z |
---|---|
last_indexed |
2018-03-19T20:35:34Z |
id |
cronfa38407 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-03-19T16:22:55.8160942</datestamp><bib-version>v2</bib-version><id>38407</id><entry>2018-02-06</entry><title>Diagnostic Potential of Imaging Flow Cytometry</title><swanseaauthors><author><sid>537a2fe031a796a3bde99679ee8c24f5</sid><ORCID>0000-0002-7715-6914</ORCID><firstname>Paul</firstname><surname>Rees</surname><name>Paul Rees</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-02-06</date><deptcode>MEDE</deptcode><abstract>Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice.</abstract><type>Journal Article</type><journal>Trends in Biotechnology</journal><publisher/><issnPrint>0167-7799</issnPrint><keywords>deep learning; disease diagnostics; high-content analysis; imaging flow cytometry; translational medicine</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/j.tibtech.2017.12.008</doi><url/><notes/><college>COLLEGE NANME</college><department>Biomedical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDE</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-03-19T16:22:55.8160942</lastEdited><Created>2018-02-06T15:55:31.4435116</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Biomedical Engineering</level></path><authors><author><firstname>Minh</firstname><surname>Doan</surname><order>1</order></author><author><firstname>Ivan</firstname><surname>Vorobjev</surname><order>2</order></author><author><firstname>Paul</firstname><surname>Rees</surname><orcid>0000-0002-7715-6914</orcid><order>3</order></author><author><firstname>Andrew</firstname><surname>Filby</surname><order>4</order></author><author><firstname>Olaf</firstname><surname>Wolkenhauer</surname><order>5</order></author><author><firstname>Anne E.</firstname><surname>Goldfeld</surname><order>6</order></author><author><firstname>Judy</firstname><surname>Lieberman</surname><order>7</order></author><author><firstname>Natasha</firstname><surname>Barteneva</surname><order>8</order></author><author><firstname>Anne E.</firstname><surname>Carpenter</surname><order>9</order></author><author><firstname>Holger</firstname><surname>Hennig</surname><order>10</order></author></authors><documents><document><filename>0038407-06022018155702.pdf</filename><originalFilename>doan2018.pdf</originalFilename><uploaded>2018-02-06T15:57:02.2200000</uploaded><type>Output</type><contentLength>997063</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-06T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-03-19T16:22:55.8160942 v2 38407 2018-02-06 Diagnostic Potential of Imaging Flow Cytometry 537a2fe031a796a3bde99679ee8c24f5 0000-0002-7715-6914 Paul Rees Paul Rees true false 2018-02-06 MEDE Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice. Journal Article Trends in Biotechnology 0167-7799 deep learning; disease diagnostics; high-content analysis; imaging flow cytometry; translational medicine 31 12 2018 2018-12-31 10.1016/j.tibtech.2017.12.008 COLLEGE NANME Biomedical Engineering COLLEGE CODE MEDE Swansea University 2018-03-19T16:22:55.8160942 2018-02-06T15:55:31.4435116 Faculty of Science and Engineering School of Engineering and Applied Sciences - Biomedical Engineering Minh Doan 1 Ivan Vorobjev 2 Paul Rees 0000-0002-7715-6914 3 Andrew Filby 4 Olaf Wolkenhauer 5 Anne E. Goldfeld 6 Judy Lieberman 7 Natasha Barteneva 8 Anne E. Carpenter 9 Holger Hennig 10 0038407-06022018155702.pdf doan2018.pdf 2018-02-06T15:57:02.2200000 Output 997063 application/pdf Version of Record true 2018-02-06T00:00:00.0000000 true eng |
title |
Diagnostic Potential of Imaging Flow Cytometry |
spellingShingle |
Diagnostic Potential of Imaging Flow Cytometry Paul Rees |
title_short |
Diagnostic Potential of Imaging Flow Cytometry |
title_full |
Diagnostic Potential of Imaging Flow Cytometry |
title_fullStr |
Diagnostic Potential of Imaging Flow Cytometry |
title_full_unstemmed |
Diagnostic Potential of Imaging Flow Cytometry |
title_sort |
Diagnostic Potential of Imaging Flow Cytometry |
author_id_str_mv |
537a2fe031a796a3bde99679ee8c24f5 |
author_id_fullname_str_mv |
537a2fe031a796a3bde99679ee8c24f5_***_Paul Rees |
author |
Paul Rees |
author2 |
Minh Doan Ivan Vorobjev Paul Rees Andrew Filby Olaf Wolkenhauer Anne E. Goldfeld Judy Lieberman Natasha Barteneva Anne E. Carpenter Holger Hennig |
format |
Journal article |
container_title |
Trends in Biotechnology |
publishDate |
2018 |
institution |
Swansea University |
issn |
0167-7799 |
doi_str_mv |
10.1016/j.tibtech.2017.12.008 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Biomedical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Biomedical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice. |
published_date |
2018-12-31T03:48:34Z |
_version_ |
1763752347814592512 |
score |
11.037603 |