Journal article 1214 views 85 downloads
Defining Trace Semantics for CSP-Agda
Leibniz International Proceedings in Informatics, LIPIcs, Volume: 97, Pages: 12:1 - 12:23
Swansea University Author: Anton Setzer
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons License (CC-BY).
Download (742.47KB)
DOI (Published version): 10.4230/LIPIcs.TYPES.2016.12
Abstract
This article is based on the library CSP-Agda, which represents the process algebra CSP coinductively in the interactive theorem prover Agda. The intended application area of CSP-Agda is the proof of properties of safety critical systems (especially the railway domain). In CSP-Agda, CSP processes ha...
Published in: | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
ISBN: | 978-3-95977-065-1 |
ISSN: | 1868-8969 |
Published: |
Dagstuhl, Germany
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa38365 |
first_indexed |
2018-02-01T05:33:42Z |
---|---|
last_indexed |
2018-12-10T20:14:33Z |
id |
cronfa38365 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-12-10T14:57:50.3604611</datestamp><bib-version>v2</bib-version><id>38365</id><entry>2018-01-31</entry><title>Defining Trace Semantics for CSP-Agda</title><swanseaauthors><author><sid>5f7695285397f46d121207120247c2ae</sid><ORCID>0000-0001-5322-6060</ORCID><firstname>Anton</firstname><surname>Setzer</surname><name>Anton Setzer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-01-31</date><deptcode>MACS</deptcode><abstract>This article is based on the library CSP-Agda, which represents the process algebra CSP coinductively in the interactive theorem prover Agda. The intended application area of CSP-Agda is the proof of properties of safety critical systems (especially the railway domain). In CSP-Agda, CSP processes have been extended to monadic form, allowing the design of processes in a more modular way. In this article we extend the trace semantics of CSP to the monadic setting. We implement this semantics, together with the corresponding refinement and equality relation, formally in CSP-Agda. In order to demonstrate the proof capabilities of CSP-Agda, we prove in CSP-Agda selected algebraic laws of CSP based on the trace semantics. Because of the monadic settings, some adjustments need to be made to these laws. The examples covered in this article are the laws of refinement, commutativity of interleaving and parallel, and the monad laws for the monadic extension of CSP. All proofs and definitions have been type checked in Agda. Further proofs of algebraic laws will be available in the repository of CSP-Agda.</abstract><type>Journal Article</type><journal>Leibniz International Proceedings in Informatics, LIPIcs</journal><volume>97</volume><paginationStart>12:1</paginationStart><paginationEnd>12:23</paginationEnd><publisher>Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik</publisher><placeOfPublication>Dagstuhl, Germany</placeOfPublication><isbnElectronic>978-3-95977-065-1</isbnElectronic><issnElectronic>1868-8969</issnElectronic><keywords>Agda, CSP, Coalgebras, Coinductive Data Types, Dependent Type The- ory, IO-Monad, Induction-Recursion, Interactive Program, Monad, Monadic Programming, Pro- cess Algebras, Sized Types, Universes, Trace Semantics</keywords><publishedDay>30</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-11-30</publishedDate><doi>10.4230/LIPIcs.TYPES.2016.12</doi><url>http://drops.dagstuhl.de/opus/volltexte/2018/9850/pdf/LIPIcs-TYPES-2016-12.pdf</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-12-10T14:57:50.3604611</lastEdited><Created>2018-01-31T22:42:59.7374053</Created><authors><author><firstname>Bashar</firstname><surname>Igried</surname><order>1</order></author><author><firstname>Anton</firstname><surname>Setzer</surname><orcid>0000-0001-5322-6060</orcid><order>2</order></author></authors><documents><document><filename>0038365-26072018021200.pdf</filename><originalFilename>basharIgriedAntonSetzerTypes2016Postproceedings.pdf</originalFilename><uploaded>2018-07-26T02:12:00.1230000</uploaded><type>Output</type><contentLength>700300</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-12-10T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-12-10T14:57:50.3604611 v2 38365 2018-01-31 Defining Trace Semantics for CSP-Agda 5f7695285397f46d121207120247c2ae 0000-0001-5322-6060 Anton Setzer Anton Setzer true false 2018-01-31 MACS This article is based on the library CSP-Agda, which represents the process algebra CSP coinductively in the interactive theorem prover Agda. The intended application area of CSP-Agda is the proof of properties of safety critical systems (especially the railway domain). In CSP-Agda, CSP processes have been extended to monadic form, allowing the design of processes in a more modular way. In this article we extend the trace semantics of CSP to the monadic setting. We implement this semantics, together with the corresponding refinement and equality relation, formally in CSP-Agda. In order to demonstrate the proof capabilities of CSP-Agda, we prove in CSP-Agda selected algebraic laws of CSP based on the trace semantics. Because of the monadic settings, some adjustments need to be made to these laws. The examples covered in this article are the laws of refinement, commutativity of interleaving and parallel, and the monad laws for the monadic extension of CSP. All proofs and definitions have been type checked in Agda. Further proofs of algebraic laws will be available in the repository of CSP-Agda. Journal Article Leibniz International Proceedings in Informatics, LIPIcs 97 12:1 12:23 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik Dagstuhl, Germany 978-3-95977-065-1 1868-8969 Agda, CSP, Coalgebras, Coinductive Data Types, Dependent Type The- ory, IO-Monad, Induction-Recursion, Interactive Program, Monad, Monadic Programming, Pro- cess Algebras, Sized Types, Universes, Trace Semantics 30 11 2018 2018-11-30 10.4230/LIPIcs.TYPES.2016.12 http://drops.dagstuhl.de/opus/volltexte/2018/9850/pdf/LIPIcs-TYPES-2016-12.pdf COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-12-10T14:57:50.3604611 2018-01-31T22:42:59.7374053 Bashar Igried 1 Anton Setzer 0000-0001-5322-6060 2 0038365-26072018021200.pdf basharIgriedAntonSetzerTypes2016Postproceedings.pdf 2018-07-26T02:12:00.1230000 Output 700300 application/pdf Accepted Manuscript true 2018-12-10T00:00:00.0000000 Released under the terms of a Creative Commons License (CC-BY). true eng |
title |
Defining Trace Semantics for CSP-Agda |
spellingShingle |
Defining Trace Semantics for CSP-Agda Anton Setzer |
title_short |
Defining Trace Semantics for CSP-Agda |
title_full |
Defining Trace Semantics for CSP-Agda |
title_fullStr |
Defining Trace Semantics for CSP-Agda |
title_full_unstemmed |
Defining Trace Semantics for CSP-Agda |
title_sort |
Defining Trace Semantics for CSP-Agda |
author_id_str_mv |
5f7695285397f46d121207120247c2ae |
author_id_fullname_str_mv |
5f7695285397f46d121207120247c2ae_***_Anton Setzer |
author |
Anton Setzer |
author2 |
Bashar Igried Anton Setzer |
format |
Journal article |
container_title |
Leibniz International Proceedings in Informatics, LIPIcs |
container_volume |
97 |
container_start_page |
12:1 |
publishDate |
2018 |
institution |
Swansea University |
isbn |
978-3-95977-065-1 |
issn |
1868-8969 |
doi_str_mv |
10.4230/LIPIcs.TYPES.2016.12 |
publisher |
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik |
url |
http://drops.dagstuhl.de/opus/volltexte/2018/9850/pdf/LIPIcs-TYPES-2016-12.pdf |
document_store_str |
1 |
active_str |
0 |
description |
This article is based on the library CSP-Agda, which represents the process algebra CSP coinductively in the interactive theorem prover Agda. The intended application area of CSP-Agda is the proof of properties of safety critical systems (especially the railway domain). In CSP-Agda, CSP processes have been extended to monadic form, allowing the design of processes in a more modular way. In this article we extend the trace semantics of CSP to the monadic setting. We implement this semantics, together with the corresponding refinement and equality relation, formally in CSP-Agda. In order to demonstrate the proof capabilities of CSP-Agda, we prove in CSP-Agda selected algebraic laws of CSP based on the trace semantics. Because of the monadic settings, some adjustments need to be made to these laws. The examples covered in this article are the laws of refinement, commutativity of interleaving and parallel, and the monad laws for the monadic extension of CSP. All proofs and definitions have been type checked in Agda. Further proofs of algebraic laws will be available in the repository of CSP-Agda. |
published_date |
2018-11-30T07:22:14Z |
_version_ |
1821389236092272640 |
score |
11.047523 |