No Cover Image

Journal article 1088 views 175 downloads

Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises

Guang-an Zou, Guangying Lv, Jiang-lun Wu Orcid Logo

Journal of Mathematical Analysis and Applications, Volume: 461, Issue: 1, Pages: 595 - 609

Swansea University Author: Jiang-lun Wu Orcid Logo

Abstract

In this paper, we consider the extended stochastic Navier-Stokes equations with Caputo derivative driven by fractionalBrownian motion. We firstly derive the pathwise spatial and temporal regularity of the generalized Ornstein-Uhlenbeck process. Then we discuss the existence, uniqueness, and H\"...

Full description

Published in: Journal of Mathematical Analysis and Applications
ISBN: ISSN: 0022-247X
ISSN: 0022-247X
Published: Elsevier BV 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa38087
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-01-14T20:15:41Z
last_indexed 2020-07-28T12:57:25Z
id cronfa38087
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-28T11:19:50.0404527</datestamp><bib-version>v2</bib-version><id>38087</id><entry>2018-01-14</entry><title>Stochastic Navier&#x2013;Stokes equations with Caputo derivative driven by fractional noises</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><ORCID>0000-0003-4568-7013</ORCID><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-01-14</date><deptcode>SMA</deptcode><abstract>In this paper, we consider the extended stochastic Navier-Stokes equations with Caputo derivative driven by fractionalBrownian motion. We firstly derive the pathwise spatial and temporal regularity of the generalized Ornstein-Uhlenbeck process. Then we discuss the existence, uniqueness, and H\"{o}lder regularity of mild solutions to the given problem under certain sufficient conditions, which depend on the fractional order $\alpha$ and Hurst parameter $H$. The results obtained in this study improve some results in existing literature.</abstract><type>Journal Article</type><journal>Journal of Mathematical Analysis and Applications</journal><volume>461</volume><journalNumber>1</journalNumber><paginationStart>595</paginationStart><paginationEnd>609</paginationEnd><publisher>Elsevier BV</publisher><isbnPrint>ISSN: 0022-247X</isbnPrint><issnPrint>0022-247X</issnPrint><keywords>Caputo derivative, stochastic Navier-Stokes equations, fractional Brownian motion, mild solutions.</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-05-01</publishedDate><doi>10.1016/j.jmaa.2018.01.027</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-28T11:19:50.0404527</lastEdited><Created>2018-01-14T15:48:35.4564084</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Guang-an</firstname><surname>Zou</surname><order>1</order></author><author><firstname>Guangying</firstname><surname>Lv</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><orcid>0000-0003-4568-7013</orcid><order>3</order></author></authors><documents><document><filename>0038087-14012018155115.pdf</filename><originalFilename>TFSNSE-R1.pdf</originalFilename><uploaded>2018-01-14T15:51:15.0930000</uploaded><type>Output</type><contentLength>264078</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-28T11:19:50.0404527 v2 38087 2018-01-14 Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises dbd67e30d59b0f32592b15b5705af885 0000-0003-4568-7013 Jiang-lun Wu Jiang-lun Wu true false 2018-01-14 SMA In this paper, we consider the extended stochastic Navier-Stokes equations with Caputo derivative driven by fractionalBrownian motion. We firstly derive the pathwise spatial and temporal regularity of the generalized Ornstein-Uhlenbeck process. Then we discuss the existence, uniqueness, and H\"{o}lder regularity of mild solutions to the given problem under certain sufficient conditions, which depend on the fractional order $\alpha$ and Hurst parameter $H$. The results obtained in this study improve some results in existing literature. Journal Article Journal of Mathematical Analysis and Applications 461 1 595 609 Elsevier BV ISSN: 0022-247X 0022-247X Caputo derivative, stochastic Navier-Stokes equations, fractional Brownian motion, mild solutions. 1 5 2018 2018-05-01 10.1016/j.jmaa.2018.01.027 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2020-07-28T11:19:50.0404527 2018-01-14T15:48:35.4564084 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Guang-an Zou 1 Guangying Lv 2 Jiang-lun Wu 0000-0003-4568-7013 3 0038087-14012018155115.pdf TFSNSE-R1.pdf 2018-01-14T15:51:15.0930000 Output 264078 application/pdf Accepted Manuscript true 2019-05-01T00:00:00.0000000 true eng
title Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises
spellingShingle Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises
Jiang-lun Wu
title_short Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises
title_full Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises
title_fullStr Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises
title_full_unstemmed Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises
title_sort Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Guang-an Zou
Guangying Lv
Jiang-lun Wu
format Journal article
container_title Journal of Mathematical Analysis and Applications
container_volume 461
container_issue 1
container_start_page 595
publishDate 2018
institution Swansea University
isbn ISSN: 0022-247X
issn 0022-247X
doi_str_mv 10.1016/j.jmaa.2018.01.027
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description In this paper, we consider the extended stochastic Navier-Stokes equations with Caputo derivative driven by fractionalBrownian motion. We firstly derive the pathwise spatial and temporal regularity of the generalized Ornstein-Uhlenbeck process. Then we discuss the existence, uniqueness, and H\"{o}lder regularity of mild solutions to the given problem under certain sufficient conditions, which depend on the fractional order $\alpha$ and Hurst parameter $H$. The results obtained in this study improve some results in existing literature.
published_date 2018-05-01T03:48:08Z
_version_ 1763752320193003520
score 11.037144