No Cover Image

Journal article 1049 views 134 downloads

Hydrogen and the Light-Induced Bias Instability Mechanism in Amorphous Oxide Semiconductors

Hongfei Li, Yuzheng Guo Orcid Logo, John Robertson

Scientific Reports, Volume: 7, Issue: 1

Swansea University Author: Yuzheng Guo Orcid Logo

Abstract

Hydrogen is known to be present as an impurity in amorphous oxide semiconductors at the 0.1% level. Using amorphous ZnO as a simplified model system, we show that the hydrogens pair up at oxygen vacancies in the amorphous network, where they form metal-H-metal bridge bonds. These bonds are shown to...

Full description

Published in: Scientific Reports
ISSN: 2045-2322
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa37787
Abstract: Hydrogen is known to be present as an impurity in amorphous oxide semiconductors at the 0.1% level. Using amorphous ZnO as a simplified model system, we show that the hydrogens pair up at oxygen vacancies in the amorphous network, where they form metal-H-metal bridge bonds. These bonds are shown to create filled defect gap states lying just above the valence band edge and they are shown to give a consistent mechanism to explain the negative bias illumination stress instability found in oxide semiconductors like In-Ga-Zn-O (IGZO).
Keywords: Electrical and electronic engineering, Electronic properties and materials
College: Faculty of Science and Engineering
Issue: 1