No Cover Image

Journal article 23319 views 197 downloads

Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells

Peter Holliman Orcid Logo, Dhiyaa K. Muslem, Eurig W. Jones, Arthur Connell, Matthew Davies Orcid Logo, Cecile Charbonneau, Matt Carnie Orcid Logo, David Worsley Orcid Logo

J. Mater. Chem. A, Volume: 2, Issue: 29, Pages: 11134 - 11143

Swansea University Authors: Peter Holliman Orcid Logo, Matthew Davies Orcid Logo, Cecile Charbonneau, Matt Carnie Orcid Logo, David Worsley Orcid Logo

Check full text

DOI (Published version): 10.1039/C4TA01000K

Abstract

Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DS...

Full description

Published in: J. Mater. Chem. A
ISSN: 2050-7488 2050-7496
Published: 2014
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa37114
first_indexed 2017-11-28T20:12:55Z
last_indexed 2020-12-10T03:50:18Z
id cronfa37114
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-12-09T14:40:38.8087145</datestamp><bib-version>v2</bib-version><id>37114</id><entry>2017-11-28</entry><title>Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells</title><swanseaauthors><author><sid>c8f52394d776279c9c690dc26066ddf9</sid><ORCID>0000-0002-9911-8513</ORCID><firstname>Peter</firstname><surname>Holliman</surname><name>Peter Holliman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4dc059714847cb22ed922ab058950560</sid><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><ORCID>0000-0002-9956-6228</ORCID><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-28</date><deptcode>EAAS</deptcode><abstract>Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DSC photo-electrodes at lower temperatures. Metal peroxide powders (CaO2, MgO2, or ZnO2) were added to terpineol-based P25 pastes containing ethyl cellulose binder or to commercial TiO2 paste (DSL18NR-T). Thermal analysis shows that binder decomposition occurs at 300 &#xB0;C instead of the standard 450 &#xB0;C for a TiO2-only paste and suggests that the metal peroxides act as combustion promoters releasing heat and oxygen within the film while heating. The data show that this heat and oxygen release coincide best with binder combustion for ZnO2 and DSC device tests show that adding ZnO2 to TiO2 pastes produces the best performances affording &#x3B7; = 7.5% for small devices (0.26 cm2) and &#x3B7; = 5.7% at 300 &#xB0;C or 450 &#xB0;C for DSL18NR-T/ZnO2 for larger (1 cm2) devices. To the best of our knowledge, the performance of the (0.26 cm2) cells is comparable to the highest efficiency devices reported for DSCs fabricated using low temperature methods. The device efficiency is most strongly linked with Jsc; BET and dye sorption measurements suggest that Jsc is linked with the metal oxide surface area and dye loading. The latter is linked to the availability of surface sorption sites for dye molecules which is strongly negatively affected by any residual organic binder which resulted from incomplete combustion.</abstract><type>Journal Article</type><journal>J. Mater. Chem. A</journal><volume>2</volume><journalNumber>29</journalNumber><paginationStart>11134</paginationStart><paginationEnd>11143</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2050-7488</issnPrint><issnElectronic>2050-7496</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-08-07</publishedDate><doi>10.1039/C4TA01000K</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-09T14:40:38.8087145</lastEdited><Created>2017-11-28T13:05:42.0821854</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Peter</firstname><surname>Holliman</surname><orcid>0000-0002-9911-8513</orcid><order>1</order></author><author><firstname>Dhiyaa K.</firstname><surname>Muslem</surname><order>2</order></author><author><firstname>Eurig W.</firstname><surname>Jones</surname><order>3</order></author><author><firstname>Arthur</firstname><surname>Connell</surname><order>4</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>5</order></author><author><firstname>Cecile</firstname><surname>Charbonneau</surname><order>6</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>7</order></author><author><firstname>David</firstname><surname>Worsley</surname><orcid>0000-0002-9956-6228</orcid><order>8</order></author></authors><documents><document><filename>0037114-28112017130733.pdf</filename><originalFilename>holliman2014(2).pdf</originalFilename><uploaded>2017-11-28T13:07:33.7670000</uploaded><type>Output</type><contentLength>3297032</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-11-28T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-12-09T14:40:38.8087145 v2 37114 2017-11-28 Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells c8f52394d776279c9c690dc26066ddf9 0000-0002-9911-8513 Peter Holliman Peter Holliman true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false 4dc059714847cb22ed922ab058950560 Cecile Charbonneau Cecile Charbonneau true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false c426b1c1b0123d7057c1b969083cea69 0000-0002-9956-6228 David Worsley David Worsley true false 2017-11-28 EAAS Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DSC photo-electrodes at lower temperatures. Metal peroxide powders (CaO2, MgO2, or ZnO2) were added to terpineol-based P25 pastes containing ethyl cellulose binder or to commercial TiO2 paste (DSL18NR-T). Thermal analysis shows that binder decomposition occurs at 300 °C instead of the standard 450 °C for a TiO2-only paste and suggests that the metal peroxides act as combustion promoters releasing heat and oxygen within the film while heating. The data show that this heat and oxygen release coincide best with binder combustion for ZnO2 and DSC device tests show that adding ZnO2 to TiO2 pastes produces the best performances affording η = 7.5% for small devices (0.26 cm2) and η = 5.7% at 300 °C or 450 °C for DSL18NR-T/ZnO2 for larger (1 cm2) devices. To the best of our knowledge, the performance of the (0.26 cm2) cells is comparable to the highest efficiency devices reported for DSCs fabricated using low temperature methods. The device efficiency is most strongly linked with Jsc; BET and dye sorption measurements suggest that Jsc is linked with the metal oxide surface area and dye loading. The latter is linked to the availability of surface sorption sites for dye molecules which is strongly negatively affected by any residual organic binder which resulted from incomplete combustion. Journal Article J. Mater. Chem. A 2 29 11134 11143 2050-7488 2050-7496 7 8 2014 2014-08-07 10.1039/C4TA01000K COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2020-12-09T14:40:38.8087145 2017-11-28T13:05:42.0821854 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Peter Holliman 0000-0002-9911-8513 1 Dhiyaa K. Muslem 2 Eurig W. Jones 3 Arthur Connell 4 Matthew Davies 0000-0003-2595-5121 5 Cecile Charbonneau 6 Matt Carnie 0000-0002-4232-1967 7 David Worsley 0000-0002-9956-6228 8 0037114-28112017130733.pdf holliman2014(2).pdf 2017-11-28T13:07:33.7670000 Output 3297032 application/pdf Version of Record true 2017-11-28T00:00:00.0000000 false eng
title Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
spellingShingle Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
Peter Holliman
Matthew Davies
Cecile Charbonneau
Matt Carnie
David Worsley
title_short Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
title_full Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
title_fullStr Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
title_full_unstemmed Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
title_sort Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
author_id_str_mv c8f52394d776279c9c690dc26066ddf9
4ad478e342120ca3434657eb13527636
4dc059714847cb22ed922ab058950560
73b367694366a646b90bb15db32bb8c0
c426b1c1b0123d7057c1b969083cea69
author_id_fullname_str_mv c8f52394d776279c9c690dc26066ddf9_***_Peter Holliman
4ad478e342120ca3434657eb13527636_***_Matthew Davies
4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau
73b367694366a646b90bb15db32bb8c0_***_Matt Carnie
c426b1c1b0123d7057c1b969083cea69_***_David Worsley
author Peter Holliman
Matthew Davies
Cecile Charbonneau
Matt Carnie
David Worsley
author2 Peter Holliman
Dhiyaa K. Muslem
Eurig W. Jones
Arthur Connell
Matthew Davies
Cecile Charbonneau
Matt Carnie
David Worsley
format Journal article
container_title J. Mater. Chem. A
container_volume 2
container_issue 29
container_start_page 11134
publishDate 2014
institution Swansea University
issn 2050-7488
2050-7496
doi_str_mv 10.1039/C4TA01000K
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DSC photo-electrodes at lower temperatures. Metal peroxide powders (CaO2, MgO2, or ZnO2) were added to terpineol-based P25 pastes containing ethyl cellulose binder or to commercial TiO2 paste (DSL18NR-T). Thermal analysis shows that binder decomposition occurs at 300 °C instead of the standard 450 °C for a TiO2-only paste and suggests that the metal peroxides act as combustion promoters releasing heat and oxygen within the film while heating. The data show that this heat and oxygen release coincide best with binder combustion for ZnO2 and DSC device tests show that adding ZnO2 to TiO2 pastes produces the best performances affording η = 7.5% for small devices (0.26 cm2) and η = 5.7% at 300 °C or 450 °C for DSL18NR-T/ZnO2 for larger (1 cm2) devices. To the best of our knowledge, the performance of the (0.26 cm2) cells is comparable to the highest efficiency devices reported for DSCs fabricated using low temperature methods. The device efficiency is most strongly linked with Jsc; BET and dye sorption measurements suggest that Jsc is linked with the metal oxide surface area and dye loading. The latter is linked to the availability of surface sorption sites for dye molecules which is strongly negatively affected by any residual organic binder which resulted from incomplete combustion.
published_date 2014-08-07T19:16:58Z
_version_ 1821343606273736704
score 11.04748