Journal article 23319 views 197 downloads
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells
J. Mater. Chem. A, Volume: 2, Issue: 29, Pages: 11134 - 11143
Swansea University Authors: Peter Holliman , Matthew Davies , Cecile Charbonneau, Matt Carnie , David Worsley
-
PDF | Version of Record
Download (3.16MB)
DOI (Published version): 10.1039/C4TA01000K
Abstract
Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DS...
Published in: | J. Mater. Chem. A |
---|---|
ISSN: | 2050-7488 2050-7496 |
Published: |
2014
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa37114 |
first_indexed |
2017-11-28T20:12:55Z |
---|---|
last_indexed |
2020-12-10T03:50:18Z |
id |
cronfa37114 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-12-09T14:40:38.8087145</datestamp><bib-version>v2</bib-version><id>37114</id><entry>2017-11-28</entry><title>Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells</title><swanseaauthors><author><sid>c8f52394d776279c9c690dc26066ddf9</sid><ORCID>0000-0002-9911-8513</ORCID><firstname>Peter</firstname><surname>Holliman</surname><name>Peter Holliman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4dc059714847cb22ed922ab058950560</sid><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><ORCID>0000-0002-9956-6228</ORCID><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-28</date><deptcode>EAAS</deptcode><abstract>Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DSC photo-electrodes at lower temperatures. Metal peroxide powders (CaO2, MgO2, or ZnO2) were added to terpineol-based P25 pastes containing ethyl cellulose binder or to commercial TiO2 paste (DSL18NR-T). Thermal analysis shows that binder decomposition occurs at 300 °C instead of the standard 450 °C for a TiO2-only paste and suggests that the metal peroxides act as combustion promoters releasing heat and oxygen within the film while heating. The data show that this heat and oxygen release coincide best with binder combustion for ZnO2 and DSC device tests show that adding ZnO2 to TiO2 pastes produces the best performances affording η = 7.5% for small devices (0.26 cm2) and η = 5.7% at 300 °C or 450 °C for DSL18NR-T/ZnO2 for larger (1 cm2) devices. To the best of our knowledge, the performance of the (0.26 cm2) cells is comparable to the highest efficiency devices reported for DSCs fabricated using low temperature methods. The device efficiency is most strongly linked with Jsc; BET and dye sorption measurements suggest that Jsc is linked with the metal oxide surface area and dye loading. The latter is linked to the availability of surface sorption sites for dye molecules which is strongly negatively affected by any residual organic binder which resulted from incomplete combustion.</abstract><type>Journal Article</type><journal>J. Mater. Chem. A</journal><volume>2</volume><journalNumber>29</journalNumber><paginationStart>11134</paginationStart><paginationEnd>11143</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2050-7488</issnPrint><issnElectronic>2050-7496</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-08-07</publishedDate><doi>10.1039/C4TA01000K</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-09T14:40:38.8087145</lastEdited><Created>2017-11-28T13:05:42.0821854</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Peter</firstname><surname>Holliman</surname><orcid>0000-0002-9911-8513</orcid><order>1</order></author><author><firstname>Dhiyaa K.</firstname><surname>Muslem</surname><order>2</order></author><author><firstname>Eurig W.</firstname><surname>Jones</surname><order>3</order></author><author><firstname>Arthur</firstname><surname>Connell</surname><order>4</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>5</order></author><author><firstname>Cecile</firstname><surname>Charbonneau</surname><order>6</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>7</order></author><author><firstname>David</firstname><surname>Worsley</surname><orcid>0000-0002-9956-6228</orcid><order>8</order></author></authors><documents><document><filename>0037114-28112017130733.pdf</filename><originalFilename>holliman2014(2).pdf</originalFilename><uploaded>2017-11-28T13:07:33.7670000</uploaded><type>Output</type><contentLength>3297032</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-11-28T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-12-09T14:40:38.8087145 v2 37114 2017-11-28 Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells c8f52394d776279c9c690dc26066ddf9 0000-0002-9911-8513 Peter Holliman Peter Holliman true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false 4dc059714847cb22ed922ab058950560 Cecile Charbonneau Cecile Charbonneau true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false c426b1c1b0123d7057c1b969083cea69 0000-0002-9956-6228 David Worsley David Worsley true false 2017-11-28 EAAS Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DSC photo-electrodes at lower temperatures. Metal peroxide powders (CaO2, MgO2, or ZnO2) were added to terpineol-based P25 pastes containing ethyl cellulose binder or to commercial TiO2 paste (DSL18NR-T). Thermal analysis shows that binder decomposition occurs at 300 °C instead of the standard 450 °C for a TiO2-only paste and suggests that the metal peroxides act as combustion promoters releasing heat and oxygen within the film while heating. The data show that this heat and oxygen release coincide best with binder combustion for ZnO2 and DSC device tests show that adding ZnO2 to TiO2 pastes produces the best performances affording η = 7.5% for small devices (0.26 cm2) and η = 5.7% at 300 °C or 450 °C for DSL18NR-T/ZnO2 for larger (1 cm2) devices. To the best of our knowledge, the performance of the (0.26 cm2) cells is comparable to the highest efficiency devices reported for DSCs fabricated using low temperature methods. The device efficiency is most strongly linked with Jsc; BET and dye sorption measurements suggest that Jsc is linked with the metal oxide surface area and dye loading. The latter is linked to the availability of surface sorption sites for dye molecules which is strongly negatively affected by any residual organic binder which resulted from incomplete combustion. Journal Article J. Mater. Chem. A 2 29 11134 11143 2050-7488 2050-7496 7 8 2014 2014-08-07 10.1039/C4TA01000K COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2020-12-09T14:40:38.8087145 2017-11-28T13:05:42.0821854 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Peter Holliman 0000-0002-9911-8513 1 Dhiyaa K. Muslem 2 Eurig W. Jones 3 Arthur Connell 4 Matthew Davies 0000-0003-2595-5121 5 Cecile Charbonneau 6 Matt Carnie 0000-0002-4232-1967 7 David Worsley 0000-0002-9956-6228 8 0037114-28112017130733.pdf holliman2014(2).pdf 2017-11-28T13:07:33.7670000 Output 3297032 application/pdf Version of Record true 2017-11-28T00:00:00.0000000 false eng |
title |
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells |
spellingShingle |
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells Peter Holliman Matthew Davies Cecile Charbonneau Matt Carnie David Worsley |
title_short |
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells |
title_full |
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells |
title_fullStr |
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells |
title_full_unstemmed |
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells |
title_sort |
Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells |
author_id_str_mv |
c8f52394d776279c9c690dc26066ddf9 4ad478e342120ca3434657eb13527636 4dc059714847cb22ed922ab058950560 73b367694366a646b90bb15db32bb8c0 c426b1c1b0123d7057c1b969083cea69 |
author_id_fullname_str_mv |
c8f52394d776279c9c690dc26066ddf9_***_Peter Holliman 4ad478e342120ca3434657eb13527636_***_Matthew Davies 4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau 73b367694366a646b90bb15db32bb8c0_***_Matt Carnie c426b1c1b0123d7057c1b969083cea69_***_David Worsley |
author |
Peter Holliman Matthew Davies Cecile Charbonneau Matt Carnie David Worsley |
author2 |
Peter Holliman Dhiyaa K. Muslem Eurig W. Jones Arthur Connell Matthew Davies Cecile Charbonneau Matt Carnie David Worsley |
format |
Journal article |
container_title |
J. Mater. Chem. A |
container_volume |
2 |
container_issue |
29 |
container_start_page |
11134 |
publishDate |
2014 |
institution |
Swansea University |
issn |
2050-7488 2050-7496 |
doi_str_mv |
10.1039/C4TA01000K |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Nano-structured metal oxide films are key components of dye-sensitized (DSC) solar cells. Scaling such devices requires lower temperature processing to enable cheaper substrates to be used. In this context, we report a new and scalable method to sinter binder-containing metal oxide pastes to make DSC photo-electrodes at lower temperatures. Metal peroxide powders (CaO2, MgO2, or ZnO2) were added to terpineol-based P25 pastes containing ethyl cellulose binder or to commercial TiO2 paste (DSL18NR-T). Thermal analysis shows that binder decomposition occurs at 300 °C instead of the standard 450 °C for a TiO2-only paste and suggests that the metal peroxides act as combustion promoters releasing heat and oxygen within the film while heating. The data show that this heat and oxygen release coincide best with binder combustion for ZnO2 and DSC device tests show that adding ZnO2 to TiO2 pastes produces the best performances affording η = 7.5% for small devices (0.26 cm2) and η = 5.7% at 300 °C or 450 °C for DSL18NR-T/ZnO2 for larger (1 cm2) devices. To the best of our knowledge, the performance of the (0.26 cm2) cells is comparable to the highest efficiency devices reported for DSCs fabricated using low temperature methods. The device efficiency is most strongly linked with Jsc; BET and dye sorption measurements suggest that Jsc is linked with the metal oxide surface area and dye loading. The latter is linked to the availability of surface sorption sites for dye molecules which is strongly negatively affected by any residual organic binder which resulted from incomplete combustion. |
published_date |
2014-08-07T19:16:58Z |
_version_ |
1821343606273736704 |
score |
11.04748 |