No Cover Image

Journal article 473 views 201 downloads

On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures

H.R. Tamaddon-Jahromi, J.E. López-Aguilar, M.F. Webster, Michael Webster Orcid Logo, Hamid Tamaddon-Jahromi

Journal of Non-Newtonian Fluid Mechanics

Swansea University Authors: Michael Webster Orcid Logo, Hamid Tamaddon-Jahromi

Abstract

This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of s...

Full description

Published in: Journal of Non-Newtonian Fluid Mechanics
ISSN: 0377-0257
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa37028
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-11-23T14:05:18Z
last_indexed 2020-06-03T18:50:15Z
id cronfa37028
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-06-03T14:19:20.6344382</datestamp><bib-version>v2</bib-version><id>37028</id><entry>2017-11-23</entry><title>On modelling viscoelastic flow through abrupt circular 8:1 contractions &#x2013; matching experimental pressure-drops and vortex structures</title><swanseaauthors><author><sid>b6a811513b34d56e66489512fc2c6c61</sid><ORCID>0000-0002-7722-821X</ORCID><firstname>Michael</firstname><surname>Webster</surname><name>Michael Webster</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b3a1417ca93758b719acf764c7ced1c5</sid><firstname>Hamid</firstname><surname>Tamaddon-Jahromi</surname><name>Hamid Tamaddon-Jahromi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-23</date><deptcode>EEN</deptcode><abstract>This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of swanINNFM(q) [swIM]. Taken against increasing flow-rate, such a model is observed to capture significant vortex-enhancement in these axisymmetric flows, reflecting well the counterpart experimental findings. In addition, rich vortex characteristics are reflected, through evolving patterns of salient-corner, lip-vortex and elastic-corner vortices. A systematic parametric analysis is conducted over three independent and governing material parameters in the model, whilst attempting to interpret rheological adjustment against such changes in flow-structure. Specifically, this has involved variation in solvent-fraction (&#x3B2;), finite-extensibility parameter (L), and extensional-based dissipative parameter (&#x3BB;D).</abstract><type>Journal Article</type><journal>Journal of Non-Newtonian Fluid Mechanics</journal><publisher/><issnPrint>0377-0257</issnPrint><keywords>Experimental data vs numerical predictions; Boger fluids; flow-structure and pressure-drop; circular contraction flow; lip-, salient- and elastic-corner vortices; swIM model</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1016/j.jnnfm.2017.11.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-03T14:19:20.6344382</lastEdited><Created>2017-11-23T11:02:27.3054145</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>H.R.</firstname><surname>Tamaddon-Jahromi</surname><order>1</order></author><author><firstname>J.E.</firstname><surname>L&#xF3;pez-Aguilar</surname><order>2</order></author><author><firstname>M.F.</firstname><surname>Webster</surname><order>3</order></author><author><firstname>Michael</firstname><surname>Webster</surname><orcid>0000-0002-7722-821X</orcid><order>4</order></author><author><firstname>Hamid</firstname><surname>Tamaddon-Jahromi</surname><order>5</order></author></authors><documents><document><filename>0037028-23112017110541.pdf</filename><originalFilename>tamaddon-jahromi2017.pdf</originalFilename><uploaded>2017-11-23T11:05:41.7030000</uploaded><type>Output</type><contentLength>4276212</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-11-21T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-06-03T14:19:20.6344382 v2 37028 2017-11-23 On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures b6a811513b34d56e66489512fc2c6c61 0000-0002-7722-821X Michael Webster Michael Webster true false b3a1417ca93758b719acf764c7ced1c5 Hamid Tamaddon-Jahromi Hamid Tamaddon-Jahromi true false 2017-11-23 EEN This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of swanINNFM(q) [swIM]. Taken against increasing flow-rate, such a model is observed to capture significant vortex-enhancement in these axisymmetric flows, reflecting well the counterpart experimental findings. In addition, rich vortex characteristics are reflected, through evolving patterns of salient-corner, lip-vortex and elastic-corner vortices. A systematic parametric analysis is conducted over three independent and governing material parameters in the model, whilst attempting to interpret rheological adjustment against such changes in flow-structure. Specifically, this has involved variation in solvent-fraction (β), finite-extensibility parameter (L), and extensional-based dissipative parameter (λD). Journal Article Journal of Non-Newtonian Fluid Mechanics 0377-0257 Experimental data vs numerical predictions; Boger fluids; flow-structure and pressure-drop; circular contraction flow; lip-, salient- and elastic-corner vortices; swIM model 31 12 2017 2017-12-31 10.1016/j.jnnfm.2017.11.006 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2020-06-03T14:19:20.6344382 2017-11-23T11:02:27.3054145 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised H.R. Tamaddon-Jahromi 1 J.E. López-Aguilar 2 M.F. Webster 3 Michael Webster 0000-0002-7722-821X 4 Hamid Tamaddon-Jahromi 5 0037028-23112017110541.pdf tamaddon-jahromi2017.pdf 2017-11-23T11:05:41.7030000 Output 4276212 application/pdf Accepted Manuscript true 2018-11-21T00:00:00.0000000 false eng
title On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
spellingShingle On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
Michael Webster
Hamid Tamaddon-Jahromi
title_short On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
title_full On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
title_fullStr On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
title_full_unstemmed On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
title_sort On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
author_id_str_mv b6a811513b34d56e66489512fc2c6c61
b3a1417ca93758b719acf764c7ced1c5
author_id_fullname_str_mv b6a811513b34d56e66489512fc2c6c61_***_Michael Webster
b3a1417ca93758b719acf764c7ced1c5_***_Hamid Tamaddon-Jahromi
author Michael Webster
Hamid Tamaddon-Jahromi
author2 H.R. Tamaddon-Jahromi
J.E. López-Aguilar
M.F. Webster
Michael Webster
Hamid Tamaddon-Jahromi
format Journal article
container_title Journal of Non-Newtonian Fluid Mechanics
publishDate 2017
institution Swansea University
issn 0377-0257
doi_str_mv 10.1016/j.jnnfm.2017.11.006
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of swanINNFM(q) [swIM]. Taken against increasing flow-rate, such a model is observed to capture significant vortex-enhancement in these axisymmetric flows, reflecting well the counterpart experimental findings. In addition, rich vortex characteristics are reflected, through evolving patterns of salient-corner, lip-vortex and elastic-corner vortices. A systematic parametric analysis is conducted over three independent and governing material parameters in the model, whilst attempting to interpret rheological adjustment against such changes in flow-structure. Specifically, this has involved variation in solvent-fraction (β), finite-extensibility parameter (L), and extensional-based dissipative parameter (λD).
published_date 2017-12-31T03:46:32Z
_version_ 1763752219365081088
score 11.017062