No Cover Image

Journal article 1158 views 138 downloads

Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere

Pamela L. Reynolds, John J. Stachowicz, Kevin Hovel, Christoffer Boström, Katharyn Boyer, Mathieu Cusson, Johan S. Eklöf, Friederike G. Engel, Aschwin H. Engelen, Britas Klemens Eriksson, F. Joel Fodrie, John N. Griffin, Clara M. Hereu, Masakazu Hori, Torrance C. Hanley, Mikhail Ivanov, Pablo Jorgensen, Claudia Kruschel, Kun-Seop Lee, Karen McGlathery, Per-Olav Moksnes, Masahiro Nakaoka, Mary I. O'Connor, Nessa E. O'Connor, Robert J. Orth, Francesca Rossi, Jennifer Ruesink, Erik E. Sotka, Jonas Thormar, Fiona Tomas, Richard Unsworth Orcid Logo, Matthew A. Whalen, J. Emmett Duffy

Ecology, Volume: 99, Issue: 1, Pages: 29 - 35

Swansea University Author: Richard Unsworth Orcid Logo

Check full text

DOI (Published version): 10.1002/ecy.2064

Abstract

Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amp...

Full description

Published in: Ecology
ISSN: 00129658
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa36569
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-11-03T14:17:36Z
last_indexed 2020-07-14T13:02:35Z
id cronfa36569
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-14T11:52:26.8974108</datestamp><bib-version>v2</bib-version><id>36569</id><entry>2017-11-03</entry><title>Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere</title><swanseaauthors><author><sid>b0f33acd13a3ab541cf2aaea27f4fc2f</sid><ORCID>0000-0003-0036-9724</ORCID><firstname>Richard</firstname><surname>Unsworth</surname><name>Richard Unsworth</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-03</date><deptcode>SBI</deptcode><abstract>Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.</abstract><type>Journal Article</type><journal>Ecology</journal><volume>99</volume><journalNumber>1</journalNumber><paginationStart>29</paginationStart><paginationEnd>35</paginationEnd><publisher/><issnPrint>00129658</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1002/ecy.2064</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SBI</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-14T11:52:26.8974108</lastEdited><Created>2017-11-03T08:51:14.9541611</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Pamela L.</firstname><surname>Reynolds</surname><order>1</order></author><author><firstname>John J.</firstname><surname>Stachowicz</surname><order>2</order></author><author><firstname>Kevin</firstname><surname>Hovel</surname><order>3</order></author><author><firstname>Christoffer</firstname><surname>Bostr&#xF6;m</surname><order>4</order></author><author><firstname>Katharyn</firstname><surname>Boyer</surname><order>5</order></author><author><firstname>Mathieu</firstname><surname>Cusson</surname><order>6</order></author><author><firstname>Johan S.</firstname><surname>Ekl&#xF6;f</surname><order>7</order></author><author><firstname>Friederike G.</firstname><surname>Engel</surname><order>8</order></author><author><firstname>Aschwin H.</firstname><surname>Engelen</surname><order>9</order></author><author><firstname>Britas Klemens</firstname><surname>Eriksson</surname><order>10</order></author><author><firstname>F. Joel</firstname><surname>Fodrie</surname><order>11</order></author><author><firstname>John N.</firstname><surname>Griffin</surname><order>12</order></author><author><firstname>Clara M.</firstname><surname>Hereu</surname><order>13</order></author><author><firstname>Masakazu</firstname><surname>Hori</surname><order>14</order></author><author><firstname>Torrance C.</firstname><surname>Hanley</surname><order>15</order></author><author><firstname>Mikhail</firstname><surname>Ivanov</surname><order>16</order></author><author><firstname>Pablo</firstname><surname>Jorgensen</surname><order>17</order></author><author><firstname>Claudia</firstname><surname>Kruschel</surname><order>18</order></author><author><firstname>Kun-Seop</firstname><surname>Lee</surname><order>19</order></author><author><firstname>Karen</firstname><surname>McGlathery</surname><order>20</order></author><author><firstname>Per-Olav</firstname><surname>Moksnes</surname><order>21</order></author><author><firstname>Masahiro</firstname><surname>Nakaoka</surname><order>22</order></author><author><firstname>Mary I.</firstname><surname>O'Connor</surname><order>23</order></author><author><firstname>Nessa E.</firstname><surname>O'Connor</surname><order>24</order></author><author><firstname>Robert J.</firstname><surname>Orth</surname><order>25</order></author><author><firstname>Francesca</firstname><surname>Rossi</surname><order>26</order></author><author><firstname>Jennifer</firstname><surname>Ruesink</surname><order>27</order></author><author><firstname>Erik E.</firstname><surname>Sotka</surname><order>28</order></author><author><firstname>Jonas</firstname><surname>Thormar</surname><order>29</order></author><author><firstname>Fiona</firstname><surname>Tomas</surname><order>30</order></author><author><firstname>Richard</firstname><surname>Unsworth</surname><orcid>0000-0003-0036-9724</orcid><order>31</order></author><author><firstname>Matthew A.</firstname><surname>Whalen</surname><order>32</order></author><author><firstname>J. Emmett</firstname><surname>Duffy</surname><order>33</order></author></authors><documents><document><filename>0036569-09022018150159.pdf</filename><originalFilename>36569.pdf</originalFilename><uploaded>2018-02-09T15:01:59.0630000</uploaded><type>Output</type><contentLength>1146618</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-09T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-14T11:52:26.8974108 v2 36569 2017-11-03 Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere b0f33acd13a3ab541cf2aaea27f4fc2f 0000-0003-0036-9724 Richard Unsworth Richard Unsworth true false 2017-11-03 SBI Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. Journal Article Ecology 99 1 29 35 00129658 31 12 2018 2018-12-31 10.1002/ecy.2064 COLLEGE NANME Biosciences COLLEGE CODE SBI Swansea University 2020-07-14T11:52:26.8974108 2017-11-03T08:51:14.9541611 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Pamela L. Reynolds 1 John J. Stachowicz 2 Kevin Hovel 3 Christoffer Boström 4 Katharyn Boyer 5 Mathieu Cusson 6 Johan S. Eklöf 7 Friederike G. Engel 8 Aschwin H. Engelen 9 Britas Klemens Eriksson 10 F. Joel Fodrie 11 John N. Griffin 12 Clara M. Hereu 13 Masakazu Hori 14 Torrance C. Hanley 15 Mikhail Ivanov 16 Pablo Jorgensen 17 Claudia Kruschel 18 Kun-Seop Lee 19 Karen McGlathery 20 Per-Olav Moksnes 21 Masahiro Nakaoka 22 Mary I. O'Connor 23 Nessa E. O'Connor 24 Robert J. Orth 25 Francesca Rossi 26 Jennifer Ruesink 27 Erik E. Sotka 28 Jonas Thormar 29 Fiona Tomas 30 Richard Unsworth 0000-0003-0036-9724 31 Matthew A. Whalen 32 J. Emmett Duffy 33 0036569-09022018150159.pdf 36569.pdf 2018-02-09T15:01:59.0630000 Output 1146618 application/pdf Version of Record true 2018-02-09T00:00:00.0000000 true eng
title Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
spellingShingle Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
Richard Unsworth
title_short Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
title_full Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
title_fullStr Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
title_full_unstemmed Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
title_sort Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
author_id_str_mv b0f33acd13a3ab541cf2aaea27f4fc2f
author_id_fullname_str_mv b0f33acd13a3ab541cf2aaea27f4fc2f_***_Richard Unsworth
author Richard Unsworth
author2 Pamela L. Reynolds
John J. Stachowicz
Kevin Hovel
Christoffer Boström
Katharyn Boyer
Mathieu Cusson
Johan S. Eklöf
Friederike G. Engel
Aschwin H. Engelen
Britas Klemens Eriksson
F. Joel Fodrie
John N. Griffin
Clara M. Hereu
Masakazu Hori
Torrance C. Hanley
Mikhail Ivanov
Pablo Jorgensen
Claudia Kruschel
Kun-Seop Lee
Karen McGlathery
Per-Olav Moksnes
Masahiro Nakaoka
Mary I. O'Connor
Nessa E. O'Connor
Robert J. Orth
Francesca Rossi
Jennifer Ruesink
Erik E. Sotka
Jonas Thormar
Fiona Tomas
Richard Unsworth
Matthew A. Whalen
J. Emmett Duffy
format Journal article
container_title Ecology
container_volume 99
container_issue 1
container_start_page 29
publishDate 2018
institution Swansea University
issn 00129658
doi_str_mv 10.1002/ecy.2064
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences
document_store_str 1
active_str 0
description Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.
published_date 2018-12-31T03:45:49Z
_version_ 1763752174824718336
score 11.013731