Journal article 1304 views 161 downloads
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere
Pamela L. Reynolds,
John J. Stachowicz,
Kevin Hovel,
Christoffer Boström,
Katharyn Boyer,
Mathieu Cusson,
Johan S. Eklöf,
Friederike G. Engel,
Aschwin H. Engelen,
Britas Klemens Eriksson,
F. Joel Fodrie,
John N. Griffin,
Clara M. Hereu,
Masakazu Hori,
Torrance C. Hanley,
Mikhail Ivanov,
Pablo Jorgensen,
Claudia Kruschel,
Kun-Seop Lee,
Karen McGlathery,
Per-Olav Moksnes,
Masahiro Nakaoka,
Mary I. O'Connor,
Nessa E. O'Connor,
Robert J. Orth,
Francesca Rossi,
Jennifer Ruesink,
Erik E. Sotka,
Jonas Thormar,
Fiona Tomas,
Richard Unsworth ,
Matthew A. Whalen,
J. Emmett Duffy
Ecology, Volume: 99, Issue: 1, Pages: 29 - 35
Swansea University Author: Richard Unsworth
-
PDF | Version of Record
Download (1.11MB)
DOI (Published version): 10.1002/ecy.2064
Abstract
Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amp...
Published in: | Ecology |
---|---|
ISSN: | 00129658 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa36569 |
first_indexed |
2017-11-03T14:17:36Z |
---|---|
last_indexed |
2020-07-14T13:02:35Z |
id |
cronfa36569 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-14T11:52:26.8974108</datestamp><bib-version>v2</bib-version><id>36569</id><entry>2017-11-03</entry><title>Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere</title><swanseaauthors><author><sid>b0f33acd13a3ab541cf2aaea27f4fc2f</sid><ORCID>0000-0003-0036-9724</ORCID><firstname>Richard</firstname><surname>Unsworth</surname><name>Richard Unsworth</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-03</date><deptcode>BGPS</deptcode><abstract>Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.</abstract><type>Journal Article</type><journal>Ecology</journal><volume>99</volume><journalNumber>1</journalNumber><paginationStart>29</paginationStart><paginationEnd>35</paginationEnd><publisher/><issnPrint>00129658</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1002/ecy.2064</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-14T11:52:26.8974108</lastEdited><Created>2017-11-03T08:51:14.9541611</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Pamela L.</firstname><surname>Reynolds</surname><order>1</order></author><author><firstname>John J.</firstname><surname>Stachowicz</surname><order>2</order></author><author><firstname>Kevin</firstname><surname>Hovel</surname><order>3</order></author><author><firstname>Christoffer</firstname><surname>Boström</surname><order>4</order></author><author><firstname>Katharyn</firstname><surname>Boyer</surname><order>5</order></author><author><firstname>Mathieu</firstname><surname>Cusson</surname><order>6</order></author><author><firstname>Johan S.</firstname><surname>Eklöf</surname><order>7</order></author><author><firstname>Friederike G.</firstname><surname>Engel</surname><order>8</order></author><author><firstname>Aschwin H.</firstname><surname>Engelen</surname><order>9</order></author><author><firstname>Britas Klemens</firstname><surname>Eriksson</surname><order>10</order></author><author><firstname>F. Joel</firstname><surname>Fodrie</surname><order>11</order></author><author><firstname>John N.</firstname><surname>Griffin</surname><order>12</order></author><author><firstname>Clara M.</firstname><surname>Hereu</surname><order>13</order></author><author><firstname>Masakazu</firstname><surname>Hori</surname><order>14</order></author><author><firstname>Torrance C.</firstname><surname>Hanley</surname><order>15</order></author><author><firstname>Mikhail</firstname><surname>Ivanov</surname><order>16</order></author><author><firstname>Pablo</firstname><surname>Jorgensen</surname><order>17</order></author><author><firstname>Claudia</firstname><surname>Kruschel</surname><order>18</order></author><author><firstname>Kun-Seop</firstname><surname>Lee</surname><order>19</order></author><author><firstname>Karen</firstname><surname>McGlathery</surname><order>20</order></author><author><firstname>Per-Olav</firstname><surname>Moksnes</surname><order>21</order></author><author><firstname>Masahiro</firstname><surname>Nakaoka</surname><order>22</order></author><author><firstname>Mary I.</firstname><surname>O'Connor</surname><order>23</order></author><author><firstname>Nessa E.</firstname><surname>O'Connor</surname><order>24</order></author><author><firstname>Robert J.</firstname><surname>Orth</surname><order>25</order></author><author><firstname>Francesca</firstname><surname>Rossi</surname><order>26</order></author><author><firstname>Jennifer</firstname><surname>Ruesink</surname><order>27</order></author><author><firstname>Erik E.</firstname><surname>Sotka</surname><order>28</order></author><author><firstname>Jonas</firstname><surname>Thormar</surname><order>29</order></author><author><firstname>Fiona</firstname><surname>Tomas</surname><order>30</order></author><author><firstname>Richard</firstname><surname>Unsworth</surname><orcid>0000-0003-0036-9724</orcid><order>31</order></author><author><firstname>Matthew A.</firstname><surname>Whalen</surname><order>32</order></author><author><firstname>J. Emmett</firstname><surname>Duffy</surname><order>33</order></author></authors><documents><document><filename>0036569-09022018150159.pdf</filename><originalFilename>36569.pdf</originalFilename><uploaded>2018-02-09T15:01:59.0630000</uploaded><type>Output</type><contentLength>1146618</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-09T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-14T11:52:26.8974108 v2 36569 2017-11-03 Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere b0f33acd13a3ab541cf2aaea27f4fc2f 0000-0003-0036-9724 Richard Unsworth Richard Unsworth true false 2017-11-03 BGPS Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. Journal Article Ecology 99 1 29 35 00129658 31 12 2018 2018-12-31 10.1002/ecy.2064 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2020-07-14T11:52:26.8974108 2017-11-03T08:51:14.9541611 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Pamela L. Reynolds 1 John J. Stachowicz 2 Kevin Hovel 3 Christoffer Boström 4 Katharyn Boyer 5 Mathieu Cusson 6 Johan S. Eklöf 7 Friederike G. Engel 8 Aschwin H. Engelen 9 Britas Klemens Eriksson 10 F. Joel Fodrie 11 John N. Griffin 12 Clara M. Hereu 13 Masakazu Hori 14 Torrance C. Hanley 15 Mikhail Ivanov 16 Pablo Jorgensen 17 Claudia Kruschel 18 Kun-Seop Lee 19 Karen McGlathery 20 Per-Olav Moksnes 21 Masahiro Nakaoka 22 Mary I. O'Connor 23 Nessa E. O'Connor 24 Robert J. Orth 25 Francesca Rossi 26 Jennifer Ruesink 27 Erik E. Sotka 28 Jonas Thormar 29 Fiona Tomas 30 Richard Unsworth 0000-0003-0036-9724 31 Matthew A. Whalen 32 J. Emmett Duffy 33 0036569-09022018150159.pdf 36569.pdf 2018-02-09T15:01:59.0630000 Output 1146618 application/pdf Version of Record true 2018-02-09T00:00:00.0000000 true eng |
title |
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere |
spellingShingle |
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere Richard Unsworth |
title_short |
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere |
title_full |
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere |
title_fullStr |
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere |
title_full_unstemmed |
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere |
title_sort |
Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere |
author_id_str_mv |
b0f33acd13a3ab541cf2aaea27f4fc2f |
author_id_fullname_str_mv |
b0f33acd13a3ab541cf2aaea27f4fc2f_***_Richard Unsworth |
author |
Richard Unsworth |
author2 |
Pamela L. Reynolds John J. Stachowicz Kevin Hovel Christoffer Boström Katharyn Boyer Mathieu Cusson Johan S. Eklöf Friederike G. Engel Aschwin H. Engelen Britas Klemens Eriksson F. Joel Fodrie John N. Griffin Clara M. Hereu Masakazu Hori Torrance C. Hanley Mikhail Ivanov Pablo Jorgensen Claudia Kruschel Kun-Seop Lee Karen McGlathery Per-Olav Moksnes Masahiro Nakaoka Mary I. O'Connor Nessa E. O'Connor Robert J. Orth Francesca Rossi Jennifer Ruesink Erik E. Sotka Jonas Thormar Fiona Tomas Richard Unsworth Matthew A. Whalen J. Emmett Duffy |
format |
Journal article |
container_title |
Ecology |
container_volume |
99 |
container_issue |
1 |
container_start_page |
29 |
publishDate |
2018 |
institution |
Swansea University |
issn |
00129658 |
doi_str_mv |
10.1002/ecy.2064 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences |
document_store_str |
1 |
active_str |
0 |
description |
Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. |
published_date |
2018-12-31T19:15:30Z |
_version_ |
1821343513739001856 |
score |
11.04748 |