No Cover Image

Journal article 901 views 203 downloads

Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation

A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, Markus Muller

Physical Review X, Volume: 7, Issue: 4

Swansea University Author: Markus Muller

  • 36265.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).

    Download (7.31MB)

Abstract

A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), whi...

Full description

Published in: Physical Review X
ISSN: 2160-3308
Published: American Physical Society (APS) 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa36265
first_indexed 2017-10-25T19:11:58Z
last_indexed 2020-07-28T18:55:03Z
id cronfa36265
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-28T16:56:36.7294390</datestamp><bib-version>v2</bib-version><id>36265</id><entry>2017-10-25</entry><title>Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation</title><swanseaauthors><author><sid>9b2ac559af27c967ece69db08b83762a</sid><firstname>Markus</firstname><surname>Muller</surname><name>Markus Muller</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-10-25</date><abstract>A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that shall be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC, and a physically-motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realised in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements hereby described, this platform is a very promising candidate for fault-tolerant quantum computation.</abstract><type>Journal Article</type><journal>Physical Review X</journal><volume>7</volume><journalNumber>4</journalNumber><publisher>American Physical Society (APS)</publisher><issnElectronic>2160-3308</issnElectronic><keywords>Quantum Computing, Quantum Fault-Tolerance, Trapped Ions, Quantum Error Correction</keywords><publishedDay>13</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-13</publishedDate><doi>10.1103/physrevx.7.041061</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-28T16:56:36.7294390</lastEdited><Created>2017-10-25T15:48:33.8881297</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>A.</firstname><surname>Bermudez</surname><order>1</order></author><author><firstname>X.</firstname><surname>Xu</surname><order>2</order></author><author><firstname>R.</firstname><surname>Nigmatullin</surname><order>3</order></author><author><firstname>J.</firstname><surname>O&#x2019;Gorman</surname><order>4</order></author><author><firstname>V.</firstname><surname>Negnevitsky</surname><order>5</order></author><author><firstname>P.</firstname><surname>Schindler</surname><order>6</order></author><author><firstname>T.</firstname><surname>Monz</surname><order>7</order></author><author><firstname>U.&#x2009;G.</firstname><surname>Poschinger</surname><order>8</order></author><author><firstname>C.</firstname><surname>Hempel</surname><order>9</order></author><author><firstname>J.</firstname><surname>Home</surname><order>10</order></author><author><firstname>F.</firstname><surname>Schmidt-Kaler</surname><order>11</order></author><author><firstname>M.</firstname><surname>Biercuk</surname><order>12</order></author><author><firstname>R.</firstname><surname>Blatt</surname><order>13</order></author><author><firstname>S.</firstname><surname>Benjamin</surname><order>14</order></author><author><firstname>Markus</firstname><surname>Muller</surname><order>15</order></author></authors><documents><document><filename>0036265-09022018141438.pdf</filename><originalFilename>36265.pdf</originalFilename><uploaded>2018-02-09T14:14:38.2870000</uploaded><type>Output</type><contentLength>7756293</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-28T16:56:36.7294390 v2 36265 2017-10-25 Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation 9b2ac559af27c967ece69db08b83762a Markus Muller Markus Muller true false 2017-10-25 A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that shall be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC, and a physically-motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realised in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements hereby described, this platform is a very promising candidate for fault-tolerant quantum computation. Journal Article Physical Review X 7 4 American Physical Society (APS) 2160-3308 Quantum Computing, Quantum Fault-Tolerance, Trapped Ions, Quantum Error Correction 13 12 2017 2017-12-13 10.1103/physrevx.7.041061 COLLEGE NANME COLLEGE CODE Swansea University 2020-07-28T16:56:36.7294390 2017-10-25T15:48:33.8881297 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics A. Bermudez 1 X. Xu 2 R. Nigmatullin 3 J. O’Gorman 4 V. Negnevitsky 5 P. Schindler 6 T. Monz 7 U. G. Poschinger 8 C. Hempel 9 J. Home 10 F. Schmidt-Kaler 11 M. Biercuk 12 R. Blatt 13 S. Benjamin 14 Markus Muller 15 0036265-09022018141438.pdf 36265.pdf 2018-02-09T14:14:38.2870000 Output 7756293 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/
title Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
spellingShingle Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
Markus Muller
title_short Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_full Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_fullStr Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_full_unstemmed Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_sort Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
author_id_str_mv 9b2ac559af27c967ece69db08b83762a
author_id_fullname_str_mv 9b2ac559af27c967ece69db08b83762a_***_Markus Muller
author Markus Muller
author2 A. Bermudez
X. Xu
R. Nigmatullin
J. O’Gorman
V. Negnevitsky
P. Schindler
T. Monz
U. G. Poschinger
C. Hempel
J. Home
F. Schmidt-Kaler
M. Biercuk
R. Blatt
S. Benjamin
Markus Muller
format Journal article
container_title Physical Review X
container_volume 7
container_issue 4
publishDate 2017
institution Swansea University
issn 2160-3308
doi_str_mv 10.1103/physrevx.7.041061
publisher American Physical Society (APS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that shall be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC, and a physically-motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realised in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements hereby described, this platform is a very promising candidate for fault-tolerant quantum computation.
published_date 2017-12-13T19:14:30Z
_version_ 1821343451161034752
score 11.1586075