No Cover Image

Book chapter 1411 views

Cube-and-Conquer for Satisfiability

Marijn J. H. Heule, Oliver Kullmann Orcid Logo, Armin Biere

Handbook of Parallel Constraint Reasoning, Pages: 31 - 59

Swansea University Author: Oliver Kullmann Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1007/978-3-319-63516-3_2

Abstract

The Cube-and-Conquer method is a novel paradigm for distributed SAT solving, combining the old and the new paradigms of SAT solving. Theory and applications are discussed in depth.

Published in: Handbook of Parallel Constraint Reasoning
ISBN: 978-3-319-63515-6 978-3-319-63516-3
Published: Springer 2018
Online Access: https://link.springer.com/chapter/10.1007/978-3-319-63516-3_2
URI: https://cronfa.swan.ac.uk/Record/cronfa36186
first_indexed 2018-05-04T13:43:25Z
last_indexed 2021-01-29T03:55:37Z
id cronfa36186
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-28T16:31:29.9619247</datestamp><bib-version>v2</bib-version><id>36186</id><entry>2017-10-20</entry><title>Cube-and-Conquer for Satisfiability</title><swanseaauthors><author><sid>2b410f26f9324d6b06c2b98f67362d05</sid><ORCID>0000-0003-3021-0095</ORCID><firstname>Oliver</firstname><surname>Kullmann</surname><name>Oliver Kullmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-10-20</date><deptcode>MACS</deptcode><abstract>The Cube-and-Conquer method is a novel paradigm for distributed SAT solving, combining the old and the new paradigms of SAT solving. Theory and applications are discussed in depth.</abstract><type>Book chapter</type><journal>Handbook of Parallel Constraint Reasoning</journal><volume/><journalNumber/><paginationStart>31</paginationStart><paginationEnd>59</paginationEnd><publisher>Springer</publisher><placeOfPublication/><isbnPrint>978-3-319-63515-6</isbnPrint><isbnElectronic>978-3-319-63516-3</isbnElectronic><issnPrint/><issnElectronic/><keywords>SAT solving, distributed computing</keywords><publishedDay>6</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-04-06</publishedDate><doi>10.1007/978-3-319-63516-3_2</doi><url>https://link.springer.com/chapter/10.1007/978-3-319-63516-3_2</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-28T16:31:29.9619247</lastEdited><Created>2017-10-20T06:46:06.5509746</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Marijn J. H.</firstname><surname>Heule</surname><order>1</order></author><author><firstname>Oliver</firstname><surname>Kullmann</surname><orcid>0000-0003-3021-0095</orcid><order>2</order></author><author><firstname>Armin</firstname><surname>Biere</surname><order>3</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2021-01-28T16:31:29.9619247 v2 36186 2017-10-20 Cube-and-Conquer for Satisfiability 2b410f26f9324d6b06c2b98f67362d05 0000-0003-3021-0095 Oliver Kullmann Oliver Kullmann true false 2017-10-20 MACS The Cube-and-Conquer method is a novel paradigm for distributed SAT solving, combining the old and the new paradigms of SAT solving. Theory and applications are discussed in depth. Book chapter Handbook of Parallel Constraint Reasoning 31 59 Springer 978-3-319-63515-6 978-3-319-63516-3 SAT solving, distributed computing 6 4 2018 2018-04-06 10.1007/978-3-319-63516-3_2 https://link.springer.com/chapter/10.1007/978-3-319-63516-3_2 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-01-28T16:31:29.9619247 2017-10-20T06:46:06.5509746 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Marijn J. H. Heule 1 Oliver Kullmann 0000-0003-3021-0095 2 Armin Biere 3
title Cube-and-Conquer for Satisfiability
spellingShingle Cube-and-Conquer for Satisfiability
Oliver Kullmann
title_short Cube-and-Conquer for Satisfiability
title_full Cube-and-Conquer for Satisfiability
title_fullStr Cube-and-Conquer for Satisfiability
title_full_unstemmed Cube-and-Conquer for Satisfiability
title_sort Cube-and-Conquer for Satisfiability
author_id_str_mv 2b410f26f9324d6b06c2b98f67362d05
author_id_fullname_str_mv 2b410f26f9324d6b06c2b98f67362d05_***_Oliver Kullmann
author Oliver Kullmann
author2 Marijn J. H. Heule
Oliver Kullmann
Armin Biere
format Book chapter
container_title Handbook of Parallel Constraint Reasoning
container_start_page 31
publishDate 2018
institution Swansea University
isbn 978-3-319-63515-6
978-3-319-63516-3
doi_str_mv 10.1007/978-3-319-63516-3_2
publisher Springer
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
url https://link.springer.com/chapter/10.1007/978-3-319-63516-3_2
document_store_str 0
active_str 0
description The Cube-and-Conquer method is a novel paradigm for distributed SAT solving, combining the old and the new paradigms of SAT solving. Theory and applications are discussed in depth.
published_date 2018-04-06T07:16:08Z
_version_ 1821388852096401408
score 11.048149