No Cover Image

Journal article 1288 views 243 downloads

Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system

Covandonga Correas, Kourtney Wright, Enrico Andreoli Orcid Logo, Zeyad Almutairi, Bjornar Sandnes Orcid Logo, Andrew Barron Orcid Logo

Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume: 537, Pages: 197 - 209

Swansea University Authors: Covandonga Correas, Enrico Andreoli Orcid Logo, Bjornar Sandnes Orcid Logo, Andrew Barron Orcid Logo

  • correas2017.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (2.47MB)

Abstract

Commercial aluminosilicate proppant particles have been coated with Ca-Si oxides, with the aim to provide an in-situ increase in the angularity (decrease in Krumbein roundness value) to facilitate their immobilization. Ca-Si oxide systems have been synthesized via sol-gel, cured, and sintered at 120...

Full description

Published in: Colloids and Surfaces A: Physicochemical and Engineering Aspects
ISSN: 0927-7757
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa35976
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-10-09T11:03:00Z
last_indexed 2021-01-15T03:56:15Z
id cronfa35976
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-14T13:04:26.9009815</datestamp><bib-version>v2</bib-version><id>35976</id><entry>2017-10-09</entry><title>Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system</title><swanseaauthors><author><sid>9fe4671935718ec9e047766575d72762</sid><ORCID/><firstname>Covandonga</firstname><surname>Correas</surname><name>Covandonga Correas</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cbd843daab780bb55698a3daccd74df8</sid><ORCID>0000-0002-1207-2314</ORCID><firstname>Enrico</firstname><surname>Andreoli</surname><name>Enrico Andreoli</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>61c7c04b5c804d9402caf4881e85234b</sid><ORCID>0000-0002-4854-5857</ORCID><firstname>Bjornar</firstname><surname>Sandnes</surname><name>Bjornar Sandnes</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>92e452f20936d688d36f91c78574241d</sid><ORCID>0000-0002-2018-8288</ORCID><firstname>Andrew</firstname><surname>Barron</surname><name>Andrew Barron</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-10-09</date><deptcode>EEN</deptcode><abstract>Commercial aluminosilicate proppant particles have been coated with Ca-Si oxides, with the aim to provide an in-situ increase in the angularity (decrease in Krumbein roundness value) to facilitate their immobilization. Ca-Si oxide systems have been synthesized via sol-gel, cured, and sintered at 1200 &#xB0;C using (a) CaCO3, (b) CaCO3 + orthosilicic acid (Si(OH)4, SA), and (c) CaCO3 + fused silica (SiO2, FS). When the proppant is cured in the presence of CaCO3 and silicic acid the coatings undergo a significant compositional change, while sintering results in the conversion of the cured samples to ceramic agglomerates with the desired &#x201C;popcorn&#x201D; shapes. The best results are obtained in the presence of Si reagents, and hydration of these sintered proppants allows for a distinct increase in the angularity, which is the desired transformation to allow the proppant to be locked-in-place once located in the reservoir. The samples have been characterized at each stages of preparation by scanning electron microscopy (SEM) with associated energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-rad diffraction (XRD) and infrared (IR) spectroscopy.</abstract><type>Journal Article</type><journal>Colloids and Surfaces A: Physicochemical and Engineering Aspects</journal><volume>537</volume><journalNumber/><paginationStart>197</paginationStart><paginationEnd>209</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0927-7757</issnPrint><issnElectronic/><keywords>Proppant; CaCO3; cement; fumed silica; orthosilicic acid; calcium silicate cement</keywords><publishedDay>20</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-01-20</publishedDate><doi>10.1016/j.colsurfa.2017.10.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-14T13:04:26.9009815</lastEdited><Created>2017-10-09T09:31:11.8210772</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Covandonga</firstname><surname>Correas</surname><orcid/><order>1</order></author><author><firstname>Kourtney</firstname><surname>Wright</surname><order>2</order></author><author><firstname>Enrico</firstname><surname>Andreoli</surname><orcid>0000-0002-1207-2314</orcid><order>3</order></author><author><firstname>Zeyad</firstname><surname>Almutairi</surname><order>4</order></author><author><firstname>Bjornar</firstname><surname>Sandnes</surname><orcid>0000-0002-4854-5857</orcid><order>5</order></author><author><firstname>Andrew</firstname><surname>Barron</surname><orcid>0000-0002-2018-8288</orcid><order>6</order></author></authors><documents><document><filename>0035976-09102017093432.pdf</filename><originalFilename>correas2017.pdf</originalFilename><uploaded>2017-10-09T09:34:32.9700000</uploaded><type>Output</type><contentLength>2564406</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-10-06T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-14T13:04:26.9009815 v2 35976 2017-10-09 Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system 9fe4671935718ec9e047766575d72762 Covandonga Correas Covandonga Correas true false cbd843daab780bb55698a3daccd74df8 0000-0002-1207-2314 Enrico Andreoli Enrico Andreoli true false 61c7c04b5c804d9402caf4881e85234b 0000-0002-4854-5857 Bjornar Sandnes Bjornar Sandnes true false 92e452f20936d688d36f91c78574241d 0000-0002-2018-8288 Andrew Barron Andrew Barron true false 2017-10-09 EEN Commercial aluminosilicate proppant particles have been coated with Ca-Si oxides, with the aim to provide an in-situ increase in the angularity (decrease in Krumbein roundness value) to facilitate their immobilization. Ca-Si oxide systems have been synthesized via sol-gel, cured, and sintered at 1200 °C using (a) CaCO3, (b) CaCO3 + orthosilicic acid (Si(OH)4, SA), and (c) CaCO3 + fused silica (SiO2, FS). When the proppant is cured in the presence of CaCO3 and silicic acid the coatings undergo a significant compositional change, while sintering results in the conversion of the cured samples to ceramic agglomerates with the desired “popcorn” shapes. The best results are obtained in the presence of Si reagents, and hydration of these sintered proppants allows for a distinct increase in the angularity, which is the desired transformation to allow the proppant to be locked-in-place once located in the reservoir. The samples have been characterized at each stages of preparation by scanning electron microscopy (SEM) with associated energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-rad diffraction (XRD) and infrared (IR) spectroscopy. Journal Article Colloids and Surfaces A: Physicochemical and Engineering Aspects 537 197 209 0927-7757 Proppant; CaCO3; cement; fumed silica; orthosilicic acid; calcium silicate cement 20 1 2018 2018-01-20 10.1016/j.colsurfa.2017.10.006 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2021-01-14T13:04:26.9009815 2017-10-09T09:31:11.8210772 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Covandonga Correas 1 Kourtney Wright 2 Enrico Andreoli 0000-0002-1207-2314 3 Zeyad Almutairi 4 Bjornar Sandnes 0000-0002-4854-5857 5 Andrew Barron 0000-0002-2018-8288 6 0035976-09102017093432.pdf correas2017.pdf 2017-10-09T09:34:32.9700000 Output 2564406 application/pdf Accepted Manuscript true 2018-10-06T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system
spellingShingle Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system
Covandonga Correas
Enrico Andreoli
Bjornar Sandnes
Andrew Barron
title_short Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system
title_full Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system
title_fullStr Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system
title_full_unstemmed Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system
title_sort Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system
author_id_str_mv 9fe4671935718ec9e047766575d72762
cbd843daab780bb55698a3daccd74df8
61c7c04b5c804d9402caf4881e85234b
92e452f20936d688d36f91c78574241d
author_id_fullname_str_mv 9fe4671935718ec9e047766575d72762_***_Covandonga Correas
cbd843daab780bb55698a3daccd74df8_***_Enrico Andreoli
61c7c04b5c804d9402caf4881e85234b_***_Bjornar Sandnes
92e452f20936d688d36f91c78574241d_***_Andrew Barron
author Covandonga Correas
Enrico Andreoli
Bjornar Sandnes
Andrew Barron
author2 Covandonga Correas
Kourtney Wright
Enrico Andreoli
Zeyad Almutairi
Bjornar Sandnes
Andrew Barron
format Journal article
container_title Colloids and Surfaces A: Physicochemical and Engineering Aspects
container_volume 537
container_start_page 197
publishDate 2018
institution Swansea University
issn 0927-7757
doi_str_mv 10.1016/j.colsurfa.2017.10.006
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Commercial aluminosilicate proppant particles have been coated with Ca-Si oxides, with the aim to provide an in-situ increase in the angularity (decrease in Krumbein roundness value) to facilitate their immobilization. Ca-Si oxide systems have been synthesized via sol-gel, cured, and sintered at 1200 °C using (a) CaCO3, (b) CaCO3 + orthosilicic acid (Si(OH)4, SA), and (c) CaCO3 + fused silica (SiO2, FS). When the proppant is cured in the presence of CaCO3 and silicic acid the coatings undergo a significant compositional change, while sintering results in the conversion of the cured samples to ceramic agglomerates with the desired “popcorn” shapes. The best results are obtained in the presence of Si reagents, and hydration of these sintered proppants allows for a distinct increase in the angularity, which is the desired transformation to allow the proppant to be locked-in-place once located in the reservoir. The samples have been characterized at each stages of preparation by scanning electron microscopy (SEM) with associated energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-rad diffraction (XRD) and infrared (IR) spectroscopy.
published_date 2018-01-20T03:44:55Z
_version_ 1763752118279208960
score 11.037603