No Cover Image

Journal article 1196 views 131 downloads

Integrated geometric and mechanical analysis of an image-based lymphatic valve

Daniel J. Watson, Igor Sazonov Orcid Logo, David C. Zawieja, James E. Moore, Raoul van Loon Orcid Logo

Journal of Biomechanics, Volume: 64, Pages: 172 - 179

Swansea University Authors: Igor Sazonov Orcid Logo, Raoul van Loon Orcid Logo

Abstract

Lymphatic valves facilitate the lymphatic system’s role in maintaining fluid homeostasis. Malformed valves are found in several forms of primary lymphœdema, resulting in incurable swelling of the tissues and immune dysfunction. Their experimental study is complicated by their small size and operatio...

Full description

Published in: Journal of Biomechanics
ISSN: 00219290
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa35694
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Lymphatic valves facilitate the lymphatic system’s role in maintaining fluid homeostasis. Malformed valves are found in several forms of primary lymphœdema, resulting in incurable swelling of the tissues and immune dysfunction. Their experimental study is complicated by their small size and operation in low pressure and low Reynolds number environments. Mathematical models of these structures can give insight and complement experimentation. In this work, we present the first valve geometry reconstructed from confocal imagery and used in the construction of a subject-specific model in a closing mode. A framework is proposed whereby an image is converted into a valve model. An FEA study was performed to identify the significance of the shear modulus, the consequences of smoothing the leaflet surface and the effect of wall motion on valve behaviour. Smoothing is inherent to any analysis from imagery. The nature of the image, segmentation and meshing all cause attenuation of high-frequency features. Smoothing not only causes loss of surface area but also the loss of high-frequency geometric features which may reduce stiffness. This work aimed to consider these effects and inform studies by taking a manual reconstruction and through manifold harmonic analysis, attenuating higher frequency features to replicate lower resolution images or lower degree-of-freedom reconstructions. In conclusion, two metrics were considered: trans-valvular pressure required to close the valve, ΔPc, and the retrograde volume displacement after closure. The higher ΔPc, the greater the volume of lymph that will pass through the valve during closure. Retrograde volume displacement after closure gives a metric of compliance of the valve and for the quality of the valve seal. In the case of the image-specific reconstructed valve, removing features with a wavelength longer than four μm caused changes in ΔPc. Varying the shear modulus from 10kPa to 60kPa caused a 3.85 fold increase in the retrograde volume displaced. The inclusion of a non-rigid wall caused ΔPc to increase from 1.56 to 2.52 cmH2O.
Keywords: Lymphatic; Valve; Harmonic manifold analysis; Segmentation; FEA
College: Faculty of Science and Engineering
Start Page: 172
End Page: 179