No Cover Image

Journal article 1109 views

Charge transfer doping of graphene without degrading carrier mobility

Haichang Lu, Yuzheng Guo Orcid Logo, John Robertson

Journal of Applied Physics, Volume: 121, Issue: 22, Start page: 224304

Swansea University Author: Yuzheng Guo Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1063/1.4985121

Abstract

Density functional calculations are used to analyze the charge transfer doping mechanism by molecules absorbed onto graphene. Typical dopants studied are AuCl3, FeCl3, SbF5, HNO3, MoO3, Cs2O, O2, and OH. The Fermi level shifts are correlated with the electron affinity or ionization potential of the...

Full description

Published in: Journal of Applied Physics
ISSN: 0021-8979 1089-7550
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa34541
Abstract: Density functional calculations are used to analyze the charge transfer doping mechanism by molecules absorbed onto graphene. Typical dopants studied are AuCl3, FeCl3, SbF5, HNO3, MoO3, Cs2O, O2, and OH. The Fermi level shifts are correlated with the electron affinity or ionization potential of the dopants. We pay particular attention to whether the dopants form direct chemisorptive bonds which cause the underlying carbon atoms to pucker to form sp3 sites as these interrupt the π bonding of the basal plane, and cause carrier scattering and thus degrade the carrier mobility. Most species even those with high or low electronegativity do not cause puckering. In contrast, reactive radicals like -OH cause puckering of the basal plane, creating sp3 sites which degrade mobility.
Keywords: Graphene, Doping, Band structure, Carrier mobility, Chemical bonds
College: Faculty of Science and Engineering
Issue: 22
Start Page: 224304