Journal article 990 views 253 downloads
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation
The Journal of Physical Chemistry C, Volume: 121, Issue: 14, Pages: 8196 - 8203
Swansea University Author: Chengyuan Wang
-
PDF | Accepted Manuscript
Download (1.56MB)
DOI (Published version): 10.1021/acs.jpcc.7b00716
Abstract
Buckling of carbon honeycombs (CHCs) under uniaxial compression is studied based on molecular dynamics simulations. The uniaxial load applied to CHCs finally induces the local buckling associated with the biaxial compression state. This phenomenon originates from the residual stress in the CHCs due...
Published in: | The Journal of Physical Chemistry C |
---|---|
ISSN: | 1932-7447 1932-7455 |
Published: |
American Chemical Society (ACS)
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa34402 |
first_indexed |
2017-06-20T20:09:33Z |
---|---|
last_indexed |
2020-11-03T03:46:01Z |
id |
cronfa34402 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-11-02T12:10:04.4775433</datestamp><bib-version>v2</bib-version><id>34402</id><entry>2017-06-20</entry><title>Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation</title><swanseaauthors><author><sid>fdea93ab99f51d0b3921d3601876c1e5</sid><ORCID>0000-0002-1001-2537</ORCID><firstname>Chengyuan</firstname><surname>Wang</surname><name>Chengyuan Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-06-20</date><deptcode>ACEM</deptcode><abstract>Buckling of carbon honeycombs (CHCs) under uniaxial compression is studied based on molecular dynamics simulations. The uniaxial load applied to CHCs finally induces the local buckling associated with the biaxial compression state. This phenomenon originates from the residual stress in the CHCs due to the edge effect of component graphene nanoribbons. Under such a biaxial stress state, CHCs are found to exhibit two topographically different buckling modes when subjected to the uniaxial compression in the armchair and zigzag directions, respectively. In particular, the nonlocal effect originating from van der Waals interactions greatly reduces the ability of CHCs to resist structural instability and leads to early onset of CHC buckling. The buckling of CHCs is expected to be instrumental in the future applications of CHC structures. As an example, we show that an effective transportation of molecular mass enabled by the local buckling of CHCs is promising for the future CHC-based gas storage. In particular, the key issue to implement the transportation of the adsorbed gas molecules inside CHCs is to optimize the geometric size of CHCs in favor of the local buckling rather than the global buckling.</abstract><type>Journal Article</type><journal>The Journal of Physical Chemistry C</journal><volume>121</volume><journalNumber>14</journalNumber><paginationStart>8196</paginationStart><paginationEnd>8203</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1932-7447</issnPrint><issnElectronic>1932-7455</issnElectronic><keywords/><publishedDay>13</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-04-13</publishedDate><doi>10.1021/acs.jpcc.7b00716</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-11-02T12:10:04.4775433</lastEdited><Created>2017-06-20T15:30:27.7406380</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Jin</firstname><surname>Zhang</surname><order>1</order></author><author><firstname>Chengyuan</firstname><surname>Wang</surname><orcid>0000-0002-1001-2537</orcid><order>2</order></author></authors><documents><document><filename>0034402-21062017153130.pdf</filename><originalFilename>zhang2017(5).pdf</originalFilename><uploaded>2017-06-21T15:31:30.8330000</uploaded><type>Output</type><contentLength>1638838</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-11-02T12:10:04.4775433 v2 34402 2017-06-20 Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation fdea93ab99f51d0b3921d3601876c1e5 0000-0002-1001-2537 Chengyuan Wang Chengyuan Wang true false 2017-06-20 ACEM Buckling of carbon honeycombs (CHCs) under uniaxial compression is studied based on molecular dynamics simulations. The uniaxial load applied to CHCs finally induces the local buckling associated with the biaxial compression state. This phenomenon originates from the residual stress in the CHCs due to the edge effect of component graphene nanoribbons. Under such a biaxial stress state, CHCs are found to exhibit two topographically different buckling modes when subjected to the uniaxial compression in the armchair and zigzag directions, respectively. In particular, the nonlocal effect originating from van der Waals interactions greatly reduces the ability of CHCs to resist structural instability and leads to early onset of CHC buckling. The buckling of CHCs is expected to be instrumental in the future applications of CHC structures. As an example, we show that an effective transportation of molecular mass enabled by the local buckling of CHCs is promising for the future CHC-based gas storage. In particular, the key issue to implement the transportation of the adsorbed gas molecules inside CHCs is to optimize the geometric size of CHCs in favor of the local buckling rather than the global buckling. Journal Article The Journal of Physical Chemistry C 121 14 8196 8203 American Chemical Society (ACS) 1932-7447 1932-7455 13 4 2017 2017-04-13 10.1021/acs.jpcc.7b00716 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2020-11-02T12:10:04.4775433 2017-06-20T15:30:27.7406380 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Jin Zhang 1 Chengyuan Wang 0000-0002-1001-2537 2 0034402-21062017153130.pdf zhang2017(5).pdf 2017-06-21T15:31:30.8330000 Output 1638838 application/pdf Accepted Manuscript true 2018-05-28T00:00:00.0000000 true eng |
title |
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation |
spellingShingle |
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation Chengyuan Wang |
title_short |
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation |
title_full |
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation |
title_fullStr |
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation |
title_full_unstemmed |
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation |
title_sort |
Buckling of Carbon Honeycombs: A New Mechanism for Molecular Mass Transportation |
author_id_str_mv |
fdea93ab99f51d0b3921d3601876c1e5 |
author_id_fullname_str_mv |
fdea93ab99f51d0b3921d3601876c1e5_***_Chengyuan Wang |
author |
Chengyuan Wang |
author2 |
Jin Zhang Chengyuan Wang |
format |
Journal article |
container_title |
The Journal of Physical Chemistry C |
container_volume |
121 |
container_issue |
14 |
container_start_page |
8196 |
publishDate |
2017 |
institution |
Swansea University |
issn |
1932-7447 1932-7455 |
doi_str_mv |
10.1021/acs.jpcc.7b00716 |
publisher |
American Chemical Society (ACS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Buckling of carbon honeycombs (CHCs) under uniaxial compression is studied based on molecular dynamics simulations. The uniaxial load applied to CHCs finally induces the local buckling associated with the biaxial compression state. This phenomenon originates from the residual stress in the CHCs due to the edge effect of component graphene nanoribbons. Under such a biaxial stress state, CHCs are found to exhibit two topographically different buckling modes when subjected to the uniaxial compression in the armchair and zigzag directions, respectively. In particular, the nonlocal effect originating from van der Waals interactions greatly reduces the ability of CHCs to resist structural instability and leads to early onset of CHC buckling. The buckling of CHCs is expected to be instrumental in the future applications of CHC structures. As an example, we show that an effective transportation of molecular mass enabled by the local buckling of CHCs is promising for the future CHC-based gas storage. In particular, the key issue to implement the transportation of the adsorbed gas molecules inside CHCs is to optimize the geometric size of CHCs in favor of the local buckling rather than the global buckling. |
published_date |
2017-04-13T13:16:18Z |
_version_ |
1821411511693737984 |
score |
11.080252 |