Journal article 1173 views 154 downloads
Functional SPDE with Multiplicative Noise and Dini Drift
Xing Huang,
Feng-yu Wang
Annales de la faculté des sciences de Toulouse Mathématiques, Volume: 26, Issue: 2, Pages: 519 - 537
Swansea University Author: Feng-yu Wang
-
PDF | Version of Record
Download (644.28KB)
DOI (Published version): 10.5802/afst.1544
Abstract
Existence, uniqueness and non-explosion of the mild solution are proved for a class of semi-linear functional SPDEs with multiplicative noise and Dini continuous drifts. In the finite-dimensional and bounded time delay setting, the log-Harnack inequality and L2-gradient estimate are derived. As the M...
Published in: | Annales de la faculté des sciences de Toulouse Mathématiques |
---|---|
ISSN: | 0240-2963 2258-7519 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa33134 |
first_indexed |
2017-05-01T13:06:19Z |
---|---|
last_indexed |
2018-02-09T05:21:47Z |
id |
cronfa33134 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-06-13T12:59:08.8393772</datestamp><bib-version>v2</bib-version><id>33134</id><entry>2017-05-01</entry><title>Functional SPDE with Multiplicative Noise and Dini Drift</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-05-01</date><abstract>Existence, uniqueness and non-explosion of the mild solution are proved for a class of semi-linear functional SPDEs with multiplicative noise and Dini continuous drifts. In the finite-dimensional and bounded time delay setting, the log-Harnack inequality and L2-gradient estimate are derived. As the Markov semigroup is associated to the functional solution of the equation, one needs to make analysis on the path space of the solution in the time interval of delay。</abstract><type>Journal Article</type><journal>Annales de la faculté des sciences de Toulouse Mathématiques</journal><volume>26</volume><journalNumber>2</journalNumber><paginationStart>519</paginationStart><paginationEnd>537</paginationEnd><publisher/><issnPrint>0240-2963</issnPrint><issnElectronic>2258-7519</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-04-01</publishedDate><doi>10.5802/afst.1544</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-06-13T12:59:08.8393772</lastEdited><Created>2017-05-01T11:36:38.8766480</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Xing</firstname><surname>Huang</surname><order>1</order></author><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>2</order></author></authors><documents><document><filename>0033134-13062017110032.pdf</filename><originalFilename>AFST2017.pdf</originalFilename><uploaded>2017-06-13T11:00:32.1530000</uploaded><type>Output</type><contentLength>598341</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-02-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-06-13T12:59:08.8393772 v2 33134 2017-05-01 Functional SPDE with Multiplicative Noise and Dini Drift 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2017-05-01 Existence, uniqueness and non-explosion of the mild solution are proved for a class of semi-linear functional SPDEs with multiplicative noise and Dini continuous drifts. In the finite-dimensional and bounded time delay setting, the log-Harnack inequality and L2-gradient estimate are derived. As the Markov semigroup is associated to the functional solution of the equation, one needs to make analysis on the path space of the solution in the time interval of delay。 Journal Article Annales de la faculté des sciences de Toulouse Mathématiques 26 2 519 537 0240-2963 2258-7519 1 4 2017 2017-04-01 10.5802/afst.1544 COLLEGE NANME COLLEGE CODE Swansea University 2017-06-13T12:59:08.8393772 2017-05-01T11:36:38.8766480 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Xing Huang 1 Feng-yu Wang 2 0033134-13062017110032.pdf AFST2017.pdf 2017-06-13T11:00:32.1530000 Output 598341 application/pdf Version of Record true 2017-02-01T00:00:00.0000000 true eng |
title |
Functional SPDE with Multiplicative Noise and Dini Drift |
spellingShingle |
Functional SPDE with Multiplicative Noise and Dini Drift Feng-yu Wang |
title_short |
Functional SPDE with Multiplicative Noise and Dini Drift |
title_full |
Functional SPDE with Multiplicative Noise and Dini Drift |
title_fullStr |
Functional SPDE with Multiplicative Noise and Dini Drift |
title_full_unstemmed |
Functional SPDE with Multiplicative Noise and Dini Drift |
title_sort |
Functional SPDE with Multiplicative Noise and Dini Drift |
author_id_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de |
author_id_fullname_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang |
author |
Feng-yu Wang |
author2 |
Xing Huang Feng-yu Wang |
format |
Journal article |
container_title |
Annales de la faculté des sciences de Toulouse Mathématiques |
container_volume |
26 |
container_issue |
2 |
container_start_page |
519 |
publishDate |
2017 |
institution |
Swansea University |
issn |
0240-2963 2258-7519 |
doi_str_mv |
10.5802/afst.1544 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
Existence, uniqueness and non-explosion of the mild solution are proved for a class of semi-linear functional SPDEs with multiplicative noise and Dini continuous drifts. In the finite-dimensional and bounded time delay setting, the log-Harnack inequality and L2-gradient estimate are derived. As the Markov semigroup is associated to the functional solution of the equation, one needs to make analysis on the path space of the solution in the time interval of delay。 |
published_date |
2017-04-01T07:08:08Z |
_version_ |
1821388348678209536 |
score |
11.3254 |