Journal article 958 views
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation
Rocio Hernandez-Clemente,
Rafael Maria Navarro-Cerrillo,
Pablo J. Zarco-Tejada
IEEE Transactions on Geoscience and Remote Sensing, Volume: 52, Issue: 8, Pages: 5206 - 5217
Swansea University Author: Rocio Hernandez-Clemente
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/TGRS.2013.2287304
Abstract
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation
Published in: | IEEE Transactions on Geoscience and Remote Sensing |
---|---|
ISSN: | 0196-2892 1558-0644 |
Published: |
2014
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32947 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2017-04-05T19:00:44Z |
---|---|
last_indexed |
2018-02-09T05:21:25Z |
id |
cronfa32947 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-07-17T16:46:53.2499039</datestamp><bib-version>v2</bib-version><id>32947</id><entry>2017-04-05</entry><title>Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation</title><swanseaauthors><author><sid>0b007e63ef097cd47d6bc60b58379103</sid><firstname>Rocio</firstname><surname>Hernandez-Clemente</surname><name>Rocio Hernandez-Clemente</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-04-05</date><deptcode>FGSEN</deptcode><abstract/><type>Journal Article</type><journal>IEEE Transactions on Geoscience and Remote Sensing</journal><volume>52</volume><journalNumber>8</journalNumber><paginationStart>5206</paginationStart><paginationEnd>5217</paginationEnd><publisher/><issnPrint>0196-2892</issnPrint><issnElectronic>1558-0644</issnElectronic><keywords/><publishedDay>9</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-01-09</publishedDate><doi>10.1109/TGRS.2013.2287304</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-07-17T16:46:53.2499039</lastEdited><Created>2017-04-05T13:39:38.3463685</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Geography</level></path><authors><author><firstname>Rocio</firstname><surname>Hernandez-Clemente</surname><order>1</order></author><author><firstname>Rafael Maria</firstname><surname>Navarro-Cerrillo</surname><order>2</order></author><author><firstname>Pablo J.</firstname><surname>Zarco-Tejada</surname><order>3</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2017-07-17T16:46:53.2499039 v2 32947 2017-04-05 Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation 0b007e63ef097cd47d6bc60b58379103 Rocio Hernandez-Clemente Rocio Hernandez-Clemente true false 2017-04-05 FGSEN Journal Article IEEE Transactions on Geoscience and Remote Sensing 52 8 5206 5217 0196-2892 1558-0644 9 1 2014 2014-01-09 10.1109/TGRS.2013.2287304 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2017-07-17T16:46:53.2499039 2017-04-05T13:39:38.3463685 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Geography Rocio Hernandez-Clemente 1 Rafael Maria Navarro-Cerrillo 2 Pablo J. Zarco-Tejada 3 |
title |
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation |
spellingShingle |
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation Rocio Hernandez-Clemente |
title_short |
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation |
title_full |
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation |
title_fullStr |
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation |
title_full_unstemmed |
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation |
title_sort |
Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation |
author_id_str_mv |
0b007e63ef097cd47d6bc60b58379103 |
author_id_fullname_str_mv |
0b007e63ef097cd47d6bc60b58379103_***_Rocio Hernandez-Clemente |
author |
Rocio Hernandez-Clemente |
author2 |
Rocio Hernandez-Clemente Rafael Maria Navarro-Cerrillo Pablo J. Zarco-Tejada |
format |
Journal article |
container_title |
IEEE Transactions on Geoscience and Remote Sensing |
container_volume |
52 |
container_issue |
8 |
container_start_page |
5206 |
publishDate |
2014 |
institution |
Swansea University |
issn |
0196-2892 1558-0644 |
doi_str_mv |
10.1109/TGRS.2013.2287304 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Geography{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Geography |
document_store_str |
0 |
active_str |
0 |
published_date |
2014-01-09T03:40:32Z |
_version_ |
1763751842183905280 |
score |
11.037603 |