No Cover Image

Journal article 428 views

Multitechnique Experimental Insight on an Unusual Crystal-to-Crystal High Temperature Solid State Reaction in Zirconium Carboxypyridinephosphonates: From One-Dimensional Chains to Two-Dimensional Hybrid Layers Through HF Eliminati...

F. Costantino, P. Sassi, M. Geppi, M. Taddei, Marco Taddei Orcid Logo

Crystal Growth & Design, Volume: 12, Issue: 11, Pages: 5462 - 5470

Swansea University Author: Marco Taddei Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1021/cg301042y

Abstract

Two novel N-phosphonoethylcarboxypyridines were prepared via nucleophilic substitution of two carboxypyridines (namely, 4-carboxypyridine, or isonicotinic acid, and 3-carboxypyridine, or nicotinic acid) with diethyl-2-bromoethylphosphonate in water. Two zirconium derivatives of these acids were obta...

Full description

Published in: Crystal Growth & Design
ISSN: 1528-7483 1528-7505
Published: American Chemical Society (ACS) 2012
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa32757
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Two novel N-phosphonoethylcarboxypyridines were prepared via nucleophilic substitution of two carboxypyridines (namely, 4-carboxypyridine, or isonicotinic acid, and 3-carboxypyridine, or nicotinic acid) with diethyl-2-bromoethylphosphonate in water. Two zirconium derivatives of these acids were obtained under mild solvothermal conditions, and their structures were solved from powder X-ray diffraction (PXRD) data. The zirconium derivative containing the isonicotinic moiety (1), with formula ZrF2(HF)(O3PCH2CH2NC5H4CO2), has a one-dimensional (1D) chain structure in which the carboxypyridine groups are placed in the external part of the inorganic chain constituted of zirconium octahedra and phosphonic tetrahedra, whereas the zirconium derivative containing the nicotinic moiety (2), with formula ZrF2(O3PCH2CH2NC5H4CO2), has a hybrid layered structure in which zirconium octhaedra and phosphorus tetrahedra form a new structural archetype, with a C–O group coordinating the zirconium atoms. 1 underwent a high temperature (280 °C) slow solid state transformation that involved the loss of one HF molecule coordinated to the zirconium atom and the replacement of this coordination vacancy with the neighboring C–O– group belonging to the adjacent chain. The structure of this heated compound (1a) is a polymorph of 2. A multitechnique approach, based on coupled Fourier transform infrared spectroscopy and Raman and solid state NMR spectroscopy allowed us to carry out a thorough characterization of these materials, finding nice agreements on the chemical details of this solid state reaction.
College: Faculty of Science and Engineering
Issue: 11
Start Page: 5462
End Page: 5470