Journal article 1276 views 188 downloads
Vacancy and Doping States in Monolayer and bulk Black Phosphorus
Scientific Reports, Volume: 5, Start page: 14165
Swansea University Author: Yuzheng Guo
-
PDF | Corrected Version of Record
Download (1.15MB)
DOI (Published version): 10.1038/srep14165
Abstract
The atomic geometries and transition levels of point defects and substitutional dopants in few-layer and bulk black phosphorus are calculated. The vacancy is found to reconstruct in monolayer P to leave a single dangling bond, giving a negative U defect with a +/− transition level at 0.24 eV above t...
Published in: | Scientific Reports |
---|---|
ISSN: | 2045-2322 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32123 |
Abstract: |
The atomic geometries and transition levels of point defects and substitutional dopants in few-layer and bulk black phosphorus are calculated. The vacancy is found to reconstruct in monolayer P to leave a single dangling bond, giving a negative U defect with a +/− transition level at 0.24 eV above the valence band edge. The V− state forms an unusual 4-fold coordinated site. In few-layer and bulk black P, the defect becomes a positive U site. The divacancy is much more stable than the monovacancy, and it reconstructs to give no deep gap states. Substitutional dopants such as C, Si, O or S do not give rise to shallow donor or acceptor states but instead reconstruct to form non-doping sites analogous to DX or AX centers in GaAs. Impurities on black P adopt the 8-N rule of bonding, as in amorphous semiconductors, rather than simple substitutional geometries seen in tetrahedral semiconductors. |
---|---|
College: |
Faculty of Science and Engineering |
Start Page: |
14165 |