Book chapter 1496 views 295 downloads
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
Advanced Concepts for Intelligent Vision Systems, Volume: 10016, Pages: 349 - 360
Swansea University Authors: Mike Edwards , Jingjing Deng, Xianghua Xie
-
PDF | Accepted Manuscript
Download (8.48MB)
DOI (Published version): 10.1007/978-3-319-48680-2_31
Abstract
In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient train...
Published in: | Advanced Concepts for Intelligent Vision Systems |
---|---|
ISBN: | 978-3-319-48679-6 978-3-319-48680-2 |
Published: |
2016
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32104 |
first_indexed |
2017-02-25T05:04:37Z |
---|---|
last_indexed |
2018-02-09T05:19:41Z |
id |
cronfa32104 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-04-26T17:40:42.2110648</datestamp><bib-version>v2</bib-version><id>32104</id><entry>2017-02-24</entry><title>Combining Stacked Denoising Autoencoders and Random Forests for Face Detection</title><swanseaauthors><author><sid>684864a1ce01c3d774e83ed55e41770e</sid><ORCID>0000-0003-3367-969X</ORCID><firstname>Mike</firstname><surname>Edwards</surname><name>Mike Edwards</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-24</date><deptcode>MEDS</deptcode><abstract>In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient training and detection. The proposed face detector was evaluated on two publicly available datasets and produced promising results.</abstract><type>Book chapter</type><journal>Advanced Concepts for Intelligent Vision Systems</journal><volume>10016</volume><paginationStart>349</paginationStart><paginationEnd>360</paginationEnd><publisher/><isbnPrint>978-3-319-48679-6</isbnPrint><isbnElectronic>978-3-319-48680-2</isbnElectronic><keywords>Deep Learning, Neural Network, Random Forests, Autoencoder, Face Detection, Machine Learning, Computer Vision</keywords><publishedDay>31</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-10-31</publishedDate><doi>10.1007/978-3-319-48680-2_31</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-04-26T17:40:42.2110648</lastEdited><Created>2017-02-24T23:36:10.0833448</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Mike</firstname><surname>Edwards</surname><orcid>0000-0003-3367-969X</orcid><order>1</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>2</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>3</order></author><author><firstname>Michael</firstname><surname>Edwards</surname><order>4</order></author></authors><documents><document><filename>0032104-21032017091411.pdf</filename><originalFilename>acivs16jd.pdf</originalFilename><uploaded>2017-03-21T09:14:11.4530000</uploaded><type>Output</type><contentLength>8853997</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-10-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-04-26T17:40:42.2110648 v2 32104 2017-02-24 Combining Stacked Denoising Autoencoders and Random Forests for Face Detection 684864a1ce01c3d774e83ed55e41770e 0000-0003-3367-969X Mike Edwards Mike Edwards true false 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-02-24 MEDS In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient training and detection. The proposed face detector was evaluated on two publicly available datasets and produced promising results. Book chapter Advanced Concepts for Intelligent Vision Systems 10016 349 360 978-3-319-48679-6 978-3-319-48680-2 Deep Learning, Neural Network, Random Forests, Autoencoder, Face Detection, Machine Learning, Computer Vision 31 10 2016 2016-10-31 10.1007/978-3-319-48680-2_31 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2017-04-26T17:40:42.2110648 2017-02-24T23:36:10.0833448 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Mike Edwards 0000-0003-3367-969X 1 Jingjing Deng 2 Xianghua Xie 0000-0002-2701-8660 3 Michael Edwards 4 0032104-21032017091411.pdf acivs16jd.pdf 2017-03-21T09:14:11.4530000 Output 8853997 application/pdf Accepted Manuscript true 2016-10-01T00:00:00.0000000 true eng |
title |
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection |
spellingShingle |
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection Mike Edwards Jingjing Deng Xianghua Xie |
title_short |
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection |
title_full |
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection |
title_fullStr |
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection |
title_full_unstemmed |
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection |
title_sort |
Combining Stacked Denoising Autoencoders and Random Forests for Face Detection |
author_id_str_mv |
684864a1ce01c3d774e83ed55e41770e 6f6d01d585363d6dc1622640bb4fcb3f b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
684864a1ce01c3d774e83ed55e41770e_***_Mike Edwards 6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Mike Edwards Jingjing Deng Xianghua Xie |
author2 |
Mike Edwards Jingjing Deng Xianghua Xie Michael Edwards |
format |
Book chapter |
container_title |
Advanced Concepts for Intelligent Vision Systems |
container_volume |
10016 |
container_start_page |
349 |
publishDate |
2016 |
institution |
Swansea University |
isbn |
978-3-319-48679-6 978-3-319-48680-2 |
doi_str_mv |
10.1007/978-3-319-48680-2_31 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient training and detection. The proposed face detector was evaluated on two publicly available datasets and produced promising results. |
published_date |
2016-10-31T01:15:27Z |
_version_ |
1821366160145252352 |
score |
11.04748 |