No Cover Image

Book chapter 1496 views 295 downloads

Combining Stacked Denoising Autoencoders and Random Forests for Face Detection

Mike Edwards Orcid Logo, Jingjing Deng, Xianghua Xie Orcid Logo, Michael Edwards

Advanced Concepts for Intelligent Vision Systems, Volume: 10016, Pages: 349 - 360

Swansea University Authors: Mike Edwards Orcid Logo, Jingjing Deng, Xianghua Xie Orcid Logo

DOI (Published version): 10.1007/978-3-319-48680-2_31

Abstract

In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient train...

Full description

Published in: Advanced Concepts for Intelligent Vision Systems
ISBN: 978-3-319-48679-6 978-3-319-48680-2
Published: 2016
URI: https://cronfa.swan.ac.uk/Record/cronfa32104
first_indexed 2017-02-25T05:04:37Z
last_indexed 2018-02-09T05:19:41Z
id cronfa32104
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-04-26T17:40:42.2110648</datestamp><bib-version>v2</bib-version><id>32104</id><entry>2017-02-24</entry><title>Combining Stacked Denoising Autoencoders and Random Forests for Face Detection</title><swanseaauthors><author><sid>684864a1ce01c3d774e83ed55e41770e</sid><ORCID>0000-0003-3367-969X</ORCID><firstname>Mike</firstname><surname>Edwards</surname><name>Mike Edwards</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-24</date><deptcode>MEDS</deptcode><abstract>In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient training and detection. The proposed face detector was evaluated on two publicly available datasets and produced promising results.</abstract><type>Book chapter</type><journal>Advanced Concepts for Intelligent Vision Systems</journal><volume>10016</volume><paginationStart>349</paginationStart><paginationEnd>360</paginationEnd><publisher/><isbnPrint>978-3-319-48679-6</isbnPrint><isbnElectronic>978-3-319-48680-2</isbnElectronic><keywords>Deep Learning, Neural Network, Random Forests, Autoencoder, Face Detection, Machine Learning, Computer Vision</keywords><publishedDay>31</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-10-31</publishedDate><doi>10.1007/978-3-319-48680-2_31</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-04-26T17:40:42.2110648</lastEdited><Created>2017-02-24T23:36:10.0833448</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Mike</firstname><surname>Edwards</surname><orcid>0000-0003-3367-969X</orcid><order>1</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>2</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>3</order></author><author><firstname>Michael</firstname><surname>Edwards</surname><order>4</order></author></authors><documents><document><filename>0032104-21032017091411.pdf</filename><originalFilename>acivs16jd.pdf</originalFilename><uploaded>2017-03-21T09:14:11.4530000</uploaded><type>Output</type><contentLength>8853997</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-10-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2017-04-26T17:40:42.2110648 v2 32104 2017-02-24 Combining Stacked Denoising Autoencoders and Random Forests for Face Detection 684864a1ce01c3d774e83ed55e41770e 0000-0003-3367-969X Mike Edwards Mike Edwards true false 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-02-24 MEDS In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient training and detection. The proposed face detector was evaluated on two publicly available datasets and produced promising results. Book chapter Advanced Concepts for Intelligent Vision Systems 10016 349 360 978-3-319-48679-6 978-3-319-48680-2 Deep Learning, Neural Network, Random Forests, Autoencoder, Face Detection, Machine Learning, Computer Vision 31 10 2016 2016-10-31 10.1007/978-3-319-48680-2_31 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2017-04-26T17:40:42.2110648 2017-02-24T23:36:10.0833448 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Mike Edwards 0000-0003-3367-969X 1 Jingjing Deng 2 Xianghua Xie 0000-0002-2701-8660 3 Michael Edwards 4 0032104-21032017091411.pdf acivs16jd.pdf 2017-03-21T09:14:11.4530000 Output 8853997 application/pdf Accepted Manuscript true 2016-10-01T00:00:00.0000000 true eng
title Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
spellingShingle Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
Mike Edwards
Jingjing Deng
Xianghua Xie
title_short Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
title_full Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
title_fullStr Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
title_full_unstemmed Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
title_sort Combining Stacked Denoising Autoencoders and Random Forests for Face Detection
author_id_str_mv 684864a1ce01c3d774e83ed55e41770e
6f6d01d585363d6dc1622640bb4fcb3f
b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv 684864a1ce01c3d774e83ed55e41770e_***_Mike Edwards
6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
author Mike Edwards
Jingjing Deng
Xianghua Xie
author2 Mike Edwards
Jingjing Deng
Xianghua Xie
Michael Edwards
format Book chapter
container_title Advanced Concepts for Intelligent Vision Systems
container_volume 10016
container_start_page 349
publishDate 2016
institution Swansea University
isbn 978-3-319-48679-6
978-3-319-48680-2
doi_str_mv 10.1007/978-3-319-48680-2_31
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient training and detection. The proposed face detector was evaluated on two publicly available datasets and produced promising results.
published_date 2016-10-31T01:15:27Z
_version_ 1821366160145252352
score 11.04748