Conference Paper/Proceeding/Abstract 1190 views 231 downloads
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images
Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science., Volume: 9730, Pages: 707 - 715
Swansea University Authors: Jingjing Deng, Xianghua Xie
-
PDF | Accepted Manuscript
Download (1.99MB)
DOI (Published version): 10.1007/978-3-319-41501-7_79
Abstract
In this paper, we propose a machine learning based method to detect AMD and distinguish the di↵erent stages using choroidal images obtained from optical coherence tomography (OCT). We extract texture features using a Gabor filter bank and non-linear energy transformation. Then the histogram based fe...
Published in: | Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science. |
---|---|
ISSN: | 1611-3349 0302-9743 |
Published: |
ICIAR 2016
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32100 |
first_indexed |
2017-03-15T20:01:45Z |
---|---|
last_indexed |
2018-02-09T05:19:40Z |
id |
cronfa32100 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-11-10T13:20:52.4543486</datestamp><bib-version>v2</bib-version><id>32100</id><entry>2017-02-24</entry><title>Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images</title><swanseaauthors><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-24</date><deptcode>MACS</deptcode><abstract>In this paper, we propose a machine learning based method to detect AMD and distinguish the di↵erent stages using choroidal images obtained from optical coherence tomography (OCT). We extract texture features using a Gabor filter bank and non-linear energy transformation. Then the histogram based feature descriptors are used to train the random forests, Support Vector Machine (SVM) and neural networks, which are tested on our choroid OCT image dataset with 21 participants.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science.</journal><volume>9730</volume><paginationStart>707</paginationStart><paginationEnd>715</paginationEnd><publisher>ICIAR 2016</publisher><issnPrint>1611-3349</issnPrint><issnElectronic>0302-9743</issnElectronic><keywords>Medical image analysis, OCT, Neural Network</keywords><publishedDay>31</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-07-31</publishedDate><doi>10.1007/978-3-319-41501-7_79</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-11-10T13:20:52.4543486</lastEdited><Created>2017-02-24T23:12:58.4922689</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Jingjing</firstname><surname>Deng</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Louise</firstname><surname>Terry</surname><order>3</order></author><author><firstname>Ashley</firstname><surname>Wood</surname><order>4</order></author><author><firstname>Nick</firstname><surname>White</surname><order>5</order></author><author><firstname>Tom H.</firstname><surname>Margrain</surname><order>6</order></author><author><firstname>Rachel V.</firstname><surname>North</surname><order>7</order></author></authors><documents><document><filename>0032100-10112017131746.pdf</filename><originalFilename>jdxx.iciar2016.pdf</originalFilename><uploaded>2017-11-10T13:17:46.3870000</uploaded><type>Output</type><contentLength>2054514</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-11-10T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-11-10T13:20:52.4543486 v2 32100 2017-02-24 Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-02-24 MACS In this paper, we propose a machine learning based method to detect AMD and distinguish the di↵erent stages using choroidal images obtained from optical coherence tomography (OCT). We extract texture features using a Gabor filter bank and non-linear energy transformation. Then the histogram based feature descriptors are used to train the random forests, Support Vector Machine (SVM) and neural networks, which are tested on our choroid OCT image dataset with 21 participants. Conference Paper/Proceeding/Abstract Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science. 9730 707 715 ICIAR 2016 1611-3349 0302-9743 Medical image analysis, OCT, Neural Network 31 7 2016 2016-07-31 10.1007/978-3-319-41501-7_79 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2017-11-10T13:20:52.4543486 2017-02-24T23:12:58.4922689 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Jingjing Deng 1 Xianghua Xie 0000-0002-2701-8660 2 Louise Terry 3 Ashley Wood 4 Nick White 5 Tom H. Margrain 6 Rachel V. North 7 0032100-10112017131746.pdf jdxx.iciar2016.pdf 2017-11-10T13:17:46.3870000 Output 2054514 application/pdf Accepted Manuscript true 2017-11-10T00:00:00.0000000 true eng |
title |
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images |
spellingShingle |
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images Jingjing Deng Xianghua Xie |
title_short |
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images |
title_full |
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images |
title_fullStr |
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images |
title_full_unstemmed |
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images |
title_sort |
Age-Related Macular Degeneration Detection and Stage Classification Using Choroidal OCT Images |
author_id_str_mv |
6f6d01d585363d6dc1622640bb4fcb3f b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Jingjing Deng Xianghua Xie |
author2 |
Jingjing Deng Xianghua Xie Louise Terry Ashley Wood Nick White Tom H. Margrain Rachel V. North |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science. |
container_volume |
9730 |
container_start_page |
707 |
publishDate |
2016 |
institution |
Swansea University |
issn |
1611-3349 0302-9743 |
doi_str_mv |
10.1007/978-3-319-41501-7_79 |
publisher |
ICIAR 2016 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we propose a machine learning based method to detect AMD and distinguish the di↵erent stages using choroidal images obtained from optical coherence tomography (OCT). We extract texture features using a Gabor filter bank and non-linear energy transformation. Then the histogram based feature descriptors are used to train the random forests, Support Vector Machine (SVM) and neural networks, which are tested on our choroid OCT image dataset with 21 participants. |
published_date |
2016-07-31T04:07:46Z |
_version_ |
1821377001600057344 |
score |
11.04748 |