Journal article 1415 views 363 downloads
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000
International Journal of Fatigue, Volume: 98, Pages: 279 - 285
Swansea University Authors: Jonathan Jones, Mark Whittaker , Robert Lancaster
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (1.41MB)
DOI (Published version): 10.1016/j.ijfatigue.2017.01.036
Abstract
Thermo-mechanical fatigue (TMF) tests including 0°, 90°, -90°, 45° -135° and -180°, phasing (φ) between mechanical loading and temperature were undertaken on a polycrystalline nickel-based superalloy, RR1000. Mechanical loading was employed through strain control whilst 300-700 °C and 300-750°C ther...
Published in: | International Journal of Fatigue |
---|---|
ISSN: | 0142-1123 |
Published: |
Elsevier BV
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa31841 |
first_indexed |
2017-02-01T14:46:29Z |
---|---|
last_indexed |
2020-10-24T02:42:23Z |
id |
cronfa31841 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-10-23T12:07:31.2559749</datestamp><bib-version>v2</bib-version><id>31841</id><entry>2017-02-01</entry><title>The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000</title><swanseaauthors><author><sid>bd50c45efec14ab64ff4c9e7d09a03bf</sid><ORCID/><firstname>Jonathan</firstname><surname>Jones</surname><name>Jonathan Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a146c6d442cb2c466d096179f9ac97ca</sid><ORCID>0000-0002-5854-0726</ORCID><firstname>Mark</firstname><surname>Whittaker</surname><name>Mark Whittaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e1a1b126acd3e4ff734691ec34967f29</sid><ORCID>0000-0002-1365-6944</ORCID><firstname>Robert</firstname><surname>Lancaster</surname><name>Robert Lancaster</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-01</date><deptcode>EAAS</deptcode><abstract>Thermo-mechanical fatigue (TMF) tests including 0°, 90°, -90°, 45° -135° and -180°, phasing (φ) between mechanical loading and temperature were undertaken on a polycrystalline nickel-based superalloy, RR1000. Mechanical loading was employed through strain control whilst 300-700 °C and 300-750°C thermal cycles were achieved with induction heating and forced air cooling. Mechanical strain ranges from 0.7 to 1.4% were employed. Results show that, for the strain ranges tested, TMF life is significantly affected by the employed phase angle. Furthermore the strain range and peak cycle temperature used has a substantial influence on the significance of dominant damage mechanisms, and resultant life. Various metallographic examination techniques have outlined that the dominant damage mechanisms are creep deformation at higher temperatures and early cracking of oxide layers at lower temperatures.</abstract><type>Journal Article</type><journal>International Journal of Fatigue</journal><volume>98</volume><paginationStart>279</paginationStart><paginationEnd>285</paginationEnd><publisher>Elsevier BV</publisher><issnPrint>0142-1123</issnPrint><keywords>Phase Angle; Thermo-mechanical Fatigue; Superalloys</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-05-01</publishedDate><doi>10.1016/j.ijfatigue.2017.01.036</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-23T12:07:31.2559749</lastEdited><Created>2017-02-01T11:19:58.4494681</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Jonathan</firstname><surname>Jones</surname><orcid/><order>1</order></author><author><firstname>Mark</firstname><surname>Whittaker</surname><orcid>0000-0002-5854-0726</orcid><order>2</order></author><author><firstname>Robert</firstname><surname>Lancaster</surname><orcid>0000-0002-1365-6944</orcid><order>3</order></author><author><firstname>Stephen</firstname><surname>Williams</surname><order>4</order></author></authors><documents><document><filename>0031841-01022017112114.pdf</filename><originalFilename>jones2017.pdf</originalFilename><uploaded>2017-02-01T11:21:14.4070000</uploaded><type>Output</type><contentLength>1450811</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-01-31T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>English</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-10-23T12:07:31.2559749 v2 31841 2017-02-01 The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 bd50c45efec14ab64ff4c9e7d09a03bf Jonathan Jones Jonathan Jones true false a146c6d442cb2c466d096179f9ac97ca 0000-0002-5854-0726 Mark Whittaker Mark Whittaker true false e1a1b126acd3e4ff734691ec34967f29 0000-0002-1365-6944 Robert Lancaster Robert Lancaster true false 2017-02-01 EAAS Thermo-mechanical fatigue (TMF) tests including 0°, 90°, -90°, 45° -135° and -180°, phasing (φ) between mechanical loading and temperature were undertaken on a polycrystalline nickel-based superalloy, RR1000. Mechanical loading was employed through strain control whilst 300-700 °C and 300-750°C thermal cycles were achieved with induction heating and forced air cooling. Mechanical strain ranges from 0.7 to 1.4% were employed. Results show that, for the strain ranges tested, TMF life is significantly affected by the employed phase angle. Furthermore the strain range and peak cycle temperature used has a substantial influence on the significance of dominant damage mechanisms, and resultant life. Various metallographic examination techniques have outlined that the dominant damage mechanisms are creep deformation at higher temperatures and early cracking of oxide layers at lower temperatures. Journal Article International Journal of Fatigue 98 279 285 Elsevier BV 0142-1123 Phase Angle; Thermo-mechanical Fatigue; Superalloys 1 5 2017 2017-05-01 10.1016/j.ijfatigue.2017.01.036 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2020-10-23T12:07:31.2559749 2017-02-01T11:19:58.4494681 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Jonathan Jones 1 Mark Whittaker 0000-0002-5854-0726 2 Robert Lancaster 0000-0002-1365-6944 3 Stephen Williams 4 0031841-01022017112114.pdf jones2017.pdf 2017-02-01T11:21:14.4070000 Output 1450811 application/pdf Accepted Manuscript true 2018-01-31T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true English |
title |
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 |
spellingShingle |
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 Jonathan Jones Mark Whittaker Robert Lancaster |
title_short |
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 |
title_full |
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 |
title_fullStr |
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 |
title_full_unstemmed |
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 |
title_sort |
The influence of phase angle, strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy, RR1000 |
author_id_str_mv |
bd50c45efec14ab64ff4c9e7d09a03bf a146c6d442cb2c466d096179f9ac97ca e1a1b126acd3e4ff734691ec34967f29 |
author_id_fullname_str_mv |
bd50c45efec14ab64ff4c9e7d09a03bf_***_Jonathan Jones a146c6d442cb2c466d096179f9ac97ca_***_Mark Whittaker e1a1b126acd3e4ff734691ec34967f29_***_Robert Lancaster |
author |
Jonathan Jones Mark Whittaker Robert Lancaster |
author2 |
Jonathan Jones Mark Whittaker Robert Lancaster Stephen Williams |
format |
Journal article |
container_title |
International Journal of Fatigue |
container_volume |
98 |
container_start_page |
279 |
publishDate |
2017 |
institution |
Swansea University |
issn |
0142-1123 |
doi_str_mv |
10.1016/j.ijfatigue.2017.01.036 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Thermo-mechanical fatigue (TMF) tests including 0°, 90°, -90°, 45° -135° and -180°, phasing (φ) between mechanical loading and temperature were undertaken on a polycrystalline nickel-based superalloy, RR1000. Mechanical loading was employed through strain control whilst 300-700 °C and 300-750°C thermal cycles were achieved with induction heating and forced air cooling. Mechanical strain ranges from 0.7 to 1.4% were employed. Results show that, for the strain ranges tested, TMF life is significantly affected by the employed phase angle. Furthermore the strain range and peak cycle temperature used has a substantial influence on the significance of dominant damage mechanisms, and resultant life. Various metallographic examination techniques have outlined that the dominant damage mechanisms are creep deformation at higher temperatures and early cracking of oxide layers at lower temperatures. |
published_date |
2017-05-01T07:04:52Z |
_version_ |
1821388142860566528 |
score |
11.364387 |