Journal article 1051 views 169 downloads
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
Glasgow Mathematical Journal, Volume: 60, Issue: 01, Pages: 187 - 198
Swansea University Author: Jeffrey Giansiracusa
-
PDF | Accepted Manuscript
Download (196.2KB)
DOI (Published version): 10.1017/S0017089516000653
Abstract
We study the homological algebra of bimodules over involutive associative algebras. We show that Braun’s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center....
Published in: | Glasgow Mathematical Journal |
---|---|
ISSN: | 0017-0895 1469-509X |
Published: |
Cambridge University Press
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa30925 |
first_indexed |
2016-11-04T05:30:19Z |
---|---|
last_indexed |
2021-02-24T03:47:52Z |
id |
cronfa30925 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-02-23T14:10:23.0393591</datestamp><bib-version>v2</bib-version><id>30925</id><entry>2016-11-03</entry><title>ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS</title><swanseaauthors><author><sid>03c4f93e1b94af60eb0c18c892b0c1d9</sid><ORCID>0000-0003-4252-0058</ORCID><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><name>Jeffrey Giansiracusa</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-11-03</date><deptcode>MACS</deptcode><abstract>We study the homological algebra of bimodules over involutive associative algebras. We show that Braun’s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of Z/2-coinvariants and abelianization.</abstract><type>Journal Article</type><journal>Glasgow Mathematical Journal</journal><volume>60</volume><journalNumber>01</journalNumber><paginationStart>187</paginationStart><paginationEnd>198</paginationEnd><publisher>Cambridge University Press</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0017-0895</issnPrint><issnElectronic>1469-509X</issnElectronic><keywords>Hochschild homology, involution, involutive algebras, bimodules</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1017/S0017089516000653</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-02-23T14:10:23.0393591</lastEdited><Created>2016-11-03T21:30:45.3401905</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>RAMSÈS</firstname><surname>FERNÀNDEZ-VALÈNCIA</surname><order>1</order></author><author><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><orcid>0000-0003-4252-0058</orcid><order>2</order></author></authors><documents><document><filename>0030925-03112016213150.pdf</filename><originalFilename>GMJ-15.0128.R1.pdf</originalFilename><uploaded>2016-11-03T21:31:50.4570000</uploaded><type>Output</type><contentLength>181271</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-08-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-02-23T14:10:23.0393591 v2 30925 2016-11-03 ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS 03c4f93e1b94af60eb0c18c892b0c1d9 0000-0003-4252-0058 Jeffrey Giansiracusa Jeffrey Giansiracusa true false 2016-11-03 MACS We study the homological algebra of bimodules over involutive associative algebras. We show that Braun’s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of Z/2-coinvariants and abelianization. Journal Article Glasgow Mathematical Journal 60 01 187 198 Cambridge University Press 0017-0895 1469-509X Hochschild homology, involution, involutive algebras, bimodules 31 12 2018 2018-12-31 10.1017/S0017089516000653 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-02-23T14:10:23.0393591 2016-11-03T21:30:45.3401905 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics RAMSÈS FERNÀNDEZ-VALÈNCIA 1 Jeffrey Giansiracusa 0000-0003-4252-0058 2 0030925-03112016213150.pdf GMJ-15.0128.R1.pdf 2016-11-03T21:31:50.4570000 Output 181271 application/pdf Accepted Manuscript true 2017-08-07T00:00:00.0000000 true |
title |
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS |
spellingShingle |
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS Jeffrey Giansiracusa |
title_short |
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS |
title_full |
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS |
title_fullStr |
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS |
title_full_unstemmed |
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS |
title_sort |
ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS |
author_id_str_mv |
03c4f93e1b94af60eb0c18c892b0c1d9 |
author_id_fullname_str_mv |
03c4f93e1b94af60eb0c18c892b0c1d9_***_Jeffrey Giansiracusa |
author |
Jeffrey Giansiracusa |
author2 |
RAMSÈS FERNÀNDEZ-VALÈNCIA Jeffrey Giansiracusa |
format |
Journal article |
container_title |
Glasgow Mathematical Journal |
container_volume |
60 |
container_issue |
01 |
container_start_page |
187 |
publishDate |
2018 |
institution |
Swansea University |
issn |
0017-0895 1469-509X |
doi_str_mv |
10.1017/S0017089516000653 |
publisher |
Cambridge University Press |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We study the homological algebra of bimodules over involutive associative algebras. We show that Braun’s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of Z/2-coinvariants and abelianization. |
published_date |
2018-12-31T19:01:39Z |
_version_ |
1821342642159484928 |
score |
11.04748 |