No Cover Image

Journal article 1051 views 169 downloads

ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS

RAMSÈS FERNÀNDEZ-VALÈNCIA, Jeffrey Giansiracusa Orcid Logo

Glasgow Mathematical Journal, Volume: 60, Issue: 01, Pages: 187 - 198

Swansea University Author: Jeffrey Giansiracusa Orcid Logo

Abstract

We study the homological algebra of bimodules over involutive associative algebras. We show that Braun’s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center....

Full description

Published in: Glasgow Mathematical Journal
ISSN: 0017-0895 1469-509X
Published: Cambridge University Press 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa30925
first_indexed 2016-11-04T05:30:19Z
last_indexed 2021-02-24T03:47:52Z
id cronfa30925
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-02-23T14:10:23.0393591</datestamp><bib-version>v2</bib-version><id>30925</id><entry>2016-11-03</entry><title>ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS</title><swanseaauthors><author><sid>03c4f93e1b94af60eb0c18c892b0c1d9</sid><ORCID>0000-0003-4252-0058</ORCID><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><name>Jeffrey Giansiracusa</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-11-03</date><deptcode>MACS</deptcode><abstract>We study the homological algebra of bimodules over involutive associative algebras. We show that Braun&#x2019;s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of Z/2-coinvariants and abelianization.</abstract><type>Journal Article</type><journal>Glasgow Mathematical Journal</journal><volume>60</volume><journalNumber>01</journalNumber><paginationStart>187</paginationStart><paginationEnd>198</paginationEnd><publisher>Cambridge University Press</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0017-0895</issnPrint><issnElectronic>1469-509X</issnElectronic><keywords>Hochschild homology, involution, involutive algebras, bimodules</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1017/S0017089516000653</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-02-23T14:10:23.0393591</lastEdited><Created>2016-11-03T21:30:45.3401905</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>RAMS&#xC8;S</firstname><surname>FERN&#xC0;NDEZ-VAL&#xC8;NCIA</surname><order>1</order></author><author><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><orcid>0000-0003-4252-0058</orcid><order>2</order></author></authors><documents><document><filename>0030925-03112016213150.pdf</filename><originalFilename>GMJ-15.0128.R1.pdf</originalFilename><uploaded>2016-11-03T21:31:50.4570000</uploaded><type>Output</type><contentLength>181271</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-08-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2021-02-23T14:10:23.0393591 v2 30925 2016-11-03 ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS 03c4f93e1b94af60eb0c18c892b0c1d9 0000-0003-4252-0058 Jeffrey Giansiracusa Jeffrey Giansiracusa true false 2016-11-03 MACS We study the homological algebra of bimodules over involutive associative algebras. We show that Braun’s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of Z/2-coinvariants and abelianization. Journal Article Glasgow Mathematical Journal 60 01 187 198 Cambridge University Press 0017-0895 1469-509X Hochschild homology, involution, involutive algebras, bimodules 31 12 2018 2018-12-31 10.1017/S0017089516000653 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-02-23T14:10:23.0393591 2016-11-03T21:30:45.3401905 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics RAMSÈS FERNÀNDEZ-VALÈNCIA 1 Jeffrey Giansiracusa 0000-0003-4252-0058 2 0030925-03112016213150.pdf GMJ-15.0128.R1.pdf 2016-11-03T21:31:50.4570000 Output 181271 application/pdf Accepted Manuscript true 2017-08-07T00:00:00.0000000 true
title ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
spellingShingle ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
Jeffrey Giansiracusa
title_short ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
title_full ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
title_fullStr ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
title_full_unstemmed ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
title_sort ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
author_id_str_mv 03c4f93e1b94af60eb0c18c892b0c1d9
author_id_fullname_str_mv 03c4f93e1b94af60eb0c18c892b0c1d9_***_Jeffrey Giansiracusa
author Jeffrey Giansiracusa
author2 RAMSÈS FERNÀNDEZ-VALÈNCIA
Jeffrey Giansiracusa
format Journal article
container_title Glasgow Mathematical Journal
container_volume 60
container_issue 01
container_start_page 187
publishDate 2018
institution Swansea University
issn 0017-0895
1469-509X
doi_str_mv 10.1017/S0017089516000653
publisher Cambridge University Press
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description We study the homological algebra of bimodules over involutive associative algebras. We show that Braun’s definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the Z/2-invariants intersected with the center. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of Z/2-coinvariants and abelianization.
published_date 2018-12-31T19:01:39Z
_version_ 1821342642159484928
score 11.04748