Journal article 1431 views 366 downloads
A generic contact detection framework for cylindrical particles in discrete element modelling
Computer Methods in Applied Mechanics and Engineering, Volume: 315, Pages: 632 - 651
Swansea University Authors: Yuntian Feng , Roger Owen
-
PDF | Accepted Manuscript
Download (8.81MB)
DOI (Published version): 10.1016/j.cma.2016.11.001
Abstract
This paper aims to develop a generic framework for detecting contact between cylindrical particles in discrete element modelling based on a full exploitation of the axi-symmetrical property of cylinders. The main contributions include: (1) A four-parameter based local representative system is derive...
Published in: | Computer Methods in Applied Mechanics and Engineering |
---|---|
ISSN: | 0045-7825 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa30913 |
first_indexed |
2016-11-03T14:26:45Z |
---|---|
last_indexed |
2021-01-22T03:49:15Z |
id |
cronfa30913 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-21T09:20:01.8894106</datestamp><bib-version>v2</bib-version><id>30913</id><entry>2016-11-03</entry><title>A generic contact detection framework for cylindrical particles in discrete element modelling</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0303b9485caf6fbc8787397a5d926d1c</sid><ORCID>0000-0003-2471-0544</ORCID><firstname>Roger</firstname><surname>Owen</surname><name>Roger Owen</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-11-03</date><deptcode>ACEM</deptcode><abstract>This paper aims to develop a generic framework for detecting contact between cylindrical particles in discrete element modelling based on a full exploitation of the axi-symmetrical property of cylinders. The main contributions include: (1) A four-parameter based local representative system is derived to describe the spatial relationship between two cylinders so that the 3D cylinder-cylinder intersection problem can be reduced to a series of 2D circle-ellipse intersections, which considerably simplifies the contact detection procedure. (2) A two-stage contact detection scheme is proposed in which no-overlap contact pairs are identified in the first overlap check stage, and then the actual overlap region is determined in the second resolution stage and represented by two schemes: the layered representation which is generic, and the edge representation which is numerically more efficient but less accurate. (3) The most significant contribution is the development of two theorems that establish a fundamental relationship between the contact point and contact normal of two contacting cylinders, offering a simple approach to determining the normal direction based on the contact point and vice versa. These theorems are valid not only for cylinders, but also for any axi-symmetrical shapes and their combinations. Some numerical issues are discussed. Numerical examples are presented to illustrate the capability and applicability of the proposed methodologies.</abstract><type>Journal Article</type><journal>Computer Methods in Applied Mechanics and Engineering</journal><volume>315</volume><journalNumber/><paginationStart>632</paginationStart><paginationEnd>651</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0045-7825</issnPrint><issnElectronic/><keywords/><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-03-01</publishedDate><doi>10.1016/j.cma.2016.11.001</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-21T09:20:01.8894106</lastEdited><Created>2016-11-03T11:13:01.8359863</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>1</order></author><author><firstname>K.</firstname><surname>Han</surname><order>2</order></author><author><firstname>Roger</firstname><surname>Owen</surname><orcid>0000-0003-2471-0544</orcid><order>3</order></author></authors><documents><document><filename>0030913-14112016085724.pdf</filename><originalFilename>feng2016(5).pdf</originalFilename><uploaded>2016-11-14T08:57:24.3630000</uploaded><type>Output</type><contentLength>9207114</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-11-11T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-01-21T09:20:01.8894106 v2 30913 2016-11-03 A generic contact detection framework for cylindrical particles in discrete element modelling d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 0303b9485caf6fbc8787397a5d926d1c 0000-0003-2471-0544 Roger Owen Roger Owen true false 2016-11-03 ACEM This paper aims to develop a generic framework for detecting contact between cylindrical particles in discrete element modelling based on a full exploitation of the axi-symmetrical property of cylinders. The main contributions include: (1) A four-parameter based local representative system is derived to describe the spatial relationship between two cylinders so that the 3D cylinder-cylinder intersection problem can be reduced to a series of 2D circle-ellipse intersections, which considerably simplifies the contact detection procedure. (2) A two-stage contact detection scheme is proposed in which no-overlap contact pairs are identified in the first overlap check stage, and then the actual overlap region is determined in the second resolution stage and represented by two schemes: the layered representation which is generic, and the edge representation which is numerically more efficient but less accurate. (3) The most significant contribution is the development of two theorems that establish a fundamental relationship between the contact point and contact normal of two contacting cylinders, offering a simple approach to determining the normal direction based on the contact point and vice versa. These theorems are valid not only for cylinders, but also for any axi-symmetrical shapes and their combinations. Some numerical issues are discussed. Numerical examples are presented to illustrate the capability and applicability of the proposed methodologies. Journal Article Computer Methods in Applied Mechanics and Engineering 315 632 651 0045-7825 1 3 2017 2017-03-01 10.1016/j.cma.2016.11.001 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2021-01-21T09:20:01.8894106 2016-11-03T11:13:01.8359863 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Yuntian Feng 0000-0002-6396-8698 1 K. Han 2 Roger Owen 0000-0003-2471-0544 3 0030913-14112016085724.pdf feng2016(5).pdf 2016-11-14T08:57:24.3630000 Output 9207114 application/pdf Accepted Manuscript true 2017-11-11T00:00:00.0000000 false |
title |
A generic contact detection framework for cylindrical particles in discrete element modelling |
spellingShingle |
A generic contact detection framework for cylindrical particles in discrete element modelling Yuntian Feng Roger Owen |
title_short |
A generic contact detection framework for cylindrical particles in discrete element modelling |
title_full |
A generic contact detection framework for cylindrical particles in discrete element modelling |
title_fullStr |
A generic contact detection framework for cylindrical particles in discrete element modelling |
title_full_unstemmed |
A generic contact detection framework for cylindrical particles in discrete element modelling |
title_sort |
A generic contact detection framework for cylindrical particles in discrete element modelling |
author_id_str_mv |
d66794f9c1357969a5badf654f960275 0303b9485caf6fbc8787397a5d926d1c |
author_id_fullname_str_mv |
d66794f9c1357969a5badf654f960275_***_Yuntian Feng 0303b9485caf6fbc8787397a5d926d1c_***_Roger Owen |
author |
Yuntian Feng Roger Owen |
author2 |
Yuntian Feng K. Han Roger Owen |
format |
Journal article |
container_title |
Computer Methods in Applied Mechanics and Engineering |
container_volume |
315 |
container_start_page |
632 |
publishDate |
2017 |
institution |
Swansea University |
issn |
0045-7825 |
doi_str_mv |
10.1016/j.cma.2016.11.001 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
This paper aims to develop a generic framework for detecting contact between cylindrical particles in discrete element modelling based on a full exploitation of the axi-symmetrical property of cylinders. The main contributions include: (1) A four-parameter based local representative system is derived to describe the spatial relationship between two cylinders so that the 3D cylinder-cylinder intersection problem can be reduced to a series of 2D circle-ellipse intersections, which considerably simplifies the contact detection procedure. (2) A two-stage contact detection scheme is proposed in which no-overlap contact pairs are identified in the first overlap check stage, and then the actual overlap region is determined in the second resolution stage and represented by two schemes: the layered representation which is generic, and the edge representation which is numerically more efficient but less accurate. (3) The most significant contribution is the development of two theorems that establish a fundamental relationship between the contact point and contact normal of two contacting cylinders, offering a simple approach to determining the normal direction based on the contact point and vice versa. These theorems are valid not only for cylinders, but also for any axi-symmetrical shapes and their combinations. Some numerical issues are discussed. Numerical examples are presented to illustrate the capability and applicability of the proposed methodologies. |
published_date |
2017-03-01T19:01:37Z |
_version_ |
1821342640784801792 |
score |
11.04748 |